Muutke küpsiste eelistusi

E-raamat: Practical Machine Learning: A New Look at Anomaly Detection

  • Formaat: 66 pages
  • Ilmumisaeg: 21-Jul-2014
  • Kirjastus: O'Reilly Media
  • Keel: eng
  • ISBN-13: 9781491914182
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 15,80 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: 66 pages
  • Ilmumisaeg: 21-Jul-2014
  • Kirjastus: O'Reilly Media
  • Keel: eng
  • ISBN-13: 9781491914182
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Finding Data Anomalies You Didn't Know to Look For

Anomaly detection is the detective work of machine learning: finding the unusual, catching the fraud, discovering strange activity in large and complex datasets. But, unlike Sherlock Holmes, you may not know what the puzzle is, much less what “suspects” you’re looking for. This O’Reilly report uses practical examples to explain how the underlying concepts of anomaly detection work.

From banking security to natural sciences, medicine, and marketing, anomaly detection has many useful applications in this age of big data. And the search for anomalies will intensify once the Internet of Things spawns even more new types of data. The concepts described in this report will help you tackle anomaly detection in your own project.

  • Use probabilistic models to predict what’s normal and contrast that to what you observe
  • Set an adaptive threshold to determine which data falls outside of the normal range, using the t-digest algorithm
  • Establish normal fluctuations in complex systems and signals (such as an EKG) with a more adaptive probablistic model
  • Use historical data to discover anomalies in sporadic event streams, such as web traffic
  • Learn how to use deviations in expected behavior to trigger fraud alerts

1 Looking Toward the Future
1(6)
2 The Shape of Anomaly Detection
7(8)
Finding "Normal"
8(3)
If you enjoy math, read this description of a probabilistic model of "normal"...
10(1)
Human Insight Helps
11(1)
Finding Anomalies
12(2)
Once again, if you like math, this description of anomalies is for you...
13(1)
Take-Home Lesson: Key Steps in Anomaly Detection
14(1)
A Simple Approach: Threshold Models
14(1)
3 Using t-Digest for Threshold Automation
15(8)
The Philosophy Behind Setting the Threshold
17(2)
Using t-Digest for Accurate Calculation of Extreme Quantiles
19(1)
Issues with Simple Thresholds
20(3)
4 More Complex, Adaptive Models
23(12)
Windows and Clusters
25(3)
Matches with the Windowed Reconstruction: Normal Function
28(2)
Mismatches with the Windowed Reconstruction: Anomalous Function
30(2)
A Powerful But Simple Technique
32(2)
Looking Toward Modeling More Problematic Inputs
34(1)
5 Anomalies in Sporadic Events
35(12)
Counts Don't Work Well
36(2)
Arrival Times Are the Key
38(3)
And Now with the Math...
40(1)
Event Rate in a Worked Example: Website Traffic Prediction
41(2)
Extreme Seasonality Effects
43(4)
6 No Phishing Allowed!
47(6)
The Phishing Attack
47(2)
The No-Phishing-Allowed Anomaly Detector
49(1)
How the Model Works
50(1)
Putting It All Together
51(2)
7 Anomaly Detection for the Future
53(4)
A Additional Resources 57
Ted Dunning is Chief Applications Architect at MapR Technologies and committer and PMC member of the Apache Mahout, Apache ZooKeeper, and Apache Drill projects and mentor for these Apache projects: Spark, Storm, Stratosphere, and Datafu. He contributed to Mahout clustering, classification, and matrix decomposition algorithms and helped expand the new version of Mahout Math library. Ted was the chief architect behind the MusicMatch (now Yahoo Music) and Veoh recommendation systems, built fraud-detection systems for ID Analytics (LifeLock), and has issued 24 patents to date. Ted has a PhD in computing science from University of Sheffield. When he's not doing data science, he plays guitar and mandolin. Ellen Friedman is a consultant and commentator, currently writing mainly about big data topics. She is a committer for the Apache Mahout project and a contributor to the Apache Drill project. With a PhD in Biochemistry, she has years of experience as a research scientist and has written about a variety of technical topics including molecular biology, nontraditional inheritance, and oceanography. Ellen is also co-author of a book of magic-themed cartoons, A Rabbit Under the Hat. Ellen is on Twitter at @Ellen_Friedman.