Muutke küpsiste eelistusi

E-raamat: Predictive Analytics with SAS and R: Core Concepts, Tools, and Implementation

  • Formaat: EPUB+DRM
  • Ilmumisaeg: 27-Jan-2025
  • Kirjastus: APress
  • Keel: eng
  • ISBN-13: 9798868809057
Teised raamatud teemal:
  • Formaat - EPUB+DRM
  • Hind: 67,91 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: EPUB+DRM
  • Ilmumisaeg: 27-Jan-2025
  • Kirjastus: APress
  • Keel: eng
  • ISBN-13: 9798868809057
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Gain practical knowledge of application implementation using various programming approaches in predictive analytics. This book serves as a comprehensive guide for both beginners and professionals in the field of predictive analytics, offering core principles and practical insights without requiring an extensive mathematics or statistics background.





The book starts with an introduction to analytics in decision making, protective analytics basics, and implementation in various industries. The book then takes you through types of regression, and simple linear regression in detail, followed by a demonstration of R Studio and SAS. Multiple Linear Regression is discussed next along with MLR model diagnostics. The book covers Multivariate Analysis and teaches you how to work with Principal Components Analysis, Factor Analysis, and much more. You also learn Time series Analysis with an understanding of Autoregressive Moving Average (ARMA) Models.





After reading the book, you will be able to put predictive analytics principles into practice.





What You Will Learn









Understand modeling, estimating, and evaluating models for forecasting Implement Partial F-Test and Variable Selection Method Demonstrate each analysis model in R Studio and SAS Understand SLR and MLR Analysis models





Who This Book Is For





Students and professionals in the field of data analysis and intelligence applications
Chapter 1 Introduction to Analytics.- Chapter 2 Simple Linear
Regression.
Chapter 3 Multiple Linear Regression.
Chapter 4 Multivariate
Analysis and Prediction.
Chapter 5 Time Series Analysis.
Dr. Ramchandra Sharad Mangrulkar is a Professor in the Department of Information Technology at Dwarkadas J. Sanghvi College of Engineering in Mumbai, India. He holds various memberships in professional organizations such as IEEE, ISTE, ACM, and IACSIT. He has established himself as a knowledgeable and skilled professional in his field. He has also obtained certifications such as Certified Network Security Specialist (ICSI - CNSS) from ICSI, UK. He has a strong publication record with 126 publications. Dr. Mangrulkar is proficient in several technologies and tools, including Microsoft's Power BI, Power Automate, Power Query, Power Virtual Agents, Google's Dialog Flow, Data Analytics Models and Overleaf. 





Dr. Pallavi Vijay Chavan is an Associate Professor in the Department of Information Technology at Ramrao Adik Institute of Technology, D Y Patil Deemed to be University, Navi Mumbai, MH, India. She has been in academics for the past 17 years and has worked in the areas of computing theory, data science, data analytics, and network security. In her academic journey, she has published research work in the data science and security domains with reputed publishers including Springer, Elsevier, CRC Press, and Inderscience.