Muutke küpsiste eelistusi

E-raamat: Predictive Intelligence in Medicine: 7th International Workshop, PRIME 2024, Held in Conjunction with MICCAI 2024, Marrakesh, Morocco, October 6, 2024, Proceedings

Edited by , Edited by , Edited by , Edited by
  • Formaat - EPUB+DRM
  • Hind: 61,74 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This volume constitutes the refereed proceedings of the 7th International Workshop on Predictive Intelligence in Medicine, PRIME 2024, held in conjunction with the 27th International conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 2024, in Marrakesh, Morocco in October 2024.





The 17 full papers presented here were carefully reviewed and selected from 22 submissions. These papers focus on the current, cutting-edge Predictive models and methods with applications in the field of Medical data analysis, for early disease prediction and prevention. 

Modelling the Neonatal Brain Development Using Implicit Neural Representations.- Attention Based Features Fusion Emotion Guided fNIRS Classification Network for Prenatal Depression Recognition.- Spectral Graph Sample Weighting for Interpretable Sub cohort Analysis in Predictive Models for Neuroimaging.- RCT Relational Connectivity Transformer for Enhanced Prediction of Absolute and Residual Intelligence.- Gene to Image Decoding Brain Images from Genetics via Latent Diffusion Models.- Physics Guided Multi View Graph Neural Network for Schizophrenia Classification via Structural Functional Coupling.- Automated Patient Specific Pneumoperitoneum Model Reconstruction for Surgical Navigation Systems in Distal Gastrectomy.- MNA net Multimodal Neuroimaging Attention based Architecture for Cognitive Decline Prediction.- Improving Brain MRI Segmentation with Multi Stage Deep Domain Unlearning.- DynGNN Dynamic Memory enhanced Generative GNNs for Predicting Temporal Brain Connectivity.- Strongly Topology preserving GNNs for Brain Graph Super resolution.- Generative Hypergraph Neural Network for Multiview Brain Connectivity Fusion.- Identifying brain ageing trajectories using variational autoencoders with regression model in neuroimaging data stratified by sex and validated against dementia related risk factors.- Integrating Deep Learning with Fundus and Optical Coherence Tomography for Cardiovascular Disease Prediction.- Self-Supervised Contrastive Learning for Consistent Few Shot Image Representations.- Neurocognitive Latent Space Regularization for Multi Label Diagnosis from MRI.- Segmentation of Brain Metastases in MRI A Two Stage Deep Learning Approach with Modality Impact Study.