Muutke küpsiste eelistusi

E-raamat: PRedictive Intelligence in MEdicine: First International Workshop, PRIME 2018, Held in Conjunction with MICCAI 2018, Granada, Spain, September 16, 2018, Proceedings

Edited by , Edited by , Edited by , Edited by
  • Formaat - EPUB+DRM
  • Hind: 55,56 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book constitutes the refereed proceedings of the First International Workshop on PRedictive Intelligence in MEdicine, PRIME 2018, held in conjunction with MICCAI 2018, in Granada, Spain, in September 2018.





The 20 full papers presented were carefully reviewed and selected from 23 submissions. The main aim of the workshop is to propel the advent of predictive models in a broad sense, with application to medical data. Particularly, the workshop will admit papers describing new cutting-edge predictive models and methods that solve challenging problems in the medical field.
Computer Aided Identification of Motion Disturbances Related to
Parkinson's Disease.-  Prediction of Severity and Treatment Outcome for ASD
from fMRI.- Enhancement of Perivascular Spaces Using a Very Deep 3D Dense
Network.- Generation of Amyloid PET Images via Conditional Adversarial
Training for Predicting Progression to Alzheimer's Disease.- Prediction of
Hearing Loss Based on Auditory Perception: A Preliminary Study.- Predictive
Patient Care: Survival Model to Prevent Medication Non-adherence.-  Joint
Robust Imputation and Classification for Early Dementia Detection Using
Incomplete Multi-Modality Data.- Shared Latent Structures Between Imaging
Features and Biomarkers in Early Stages of Alzheimer's Disease.-  Predicting
Nucleus Basalis of Meynert Volume from Compartmental Brain Segmentations.-
Multi-modal Neuroimaging Data Fusion via Latent Space Learning for
Alzheimer's Disease Diagnosis.- Transfer Learning for Task Adaptation of
Brain Lesion Assessment and Prediction of Brain Abnormalities
Progression/Regression Using Irregularity Age Map in Brain MRI.- Multi-View
Brain Network Prediction From a Source View Using Sample Selection via
CCA-based Multi-Kernel Connectomic Manifold Learning.- Predicting Emotional
Intelligence Scores From Multi-Session Functional Brain Connectomes.-
Predictive Modeling of Longitudinal Data for Alzheimer's Disease Diagnosis
Using RNNs.- Towards Continuous Health Diagnosis from Faces with Deep
Learning.-  XmoNet: A Fully Convolutional Network for Cross-Modality MR Image
Inference.- 3D Convolutional Neural Network and Stacked Bidirectional
Recurrent Neural Network for Alzheimer's Disease Diagnosis.- Generative
Adversarial Training for MRA Image Synthesis Using Multi-Contrast MRI.-
Diffusion MRI Spatial Super-Resolution Using Generative Adversarialv
Networks.- Prediction to Atrial Fibrillation Using Deep Convolutional Neural
Networks.