Muutke küpsiste eelistusi

E-raamat: Predictive and Simulation Analytics: Deeper Insights for Better Business Decisions

  • Formaat: EPUB+DRM
  • Ilmumisaeg: 18-Jul-2023
  • Kirjastus: Springer International Publishing AG
  • Keel: eng
  • ISBN-13: 9783031318870
  • Formaat - EPUB+DRM
  • Hind: 67,91 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: EPUB+DRM
  • Ilmumisaeg: 18-Jul-2023
  • Kirjastus: Springer International Publishing AG
  • Keel: eng
  • ISBN-13: 9783031318870

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book connects predictive analytics and simulation analytics, with the end goal of providing Rich Information to stakeholders in complex systems to direct data-driven decisions. Readers will explore methods for extracting information from data, work with simple and complex systems, and meld multiple forms of analytics for a more nuanced understanding of data science. The methods can be readily applied to business problems such as demand measurement and forecasting, predictive modeling, pricing analytics including elasticity estimation, customer satisfaction assessment, market research, new product development, and more. The book includes Python examples in Jupyter notebooks, available at the book's affiliated Github.

This volume is intended for current and aspiring business data analysts, data scientists, and market research professionals, in both the private and public sectors.

Arvustused

Throughout the book there are extensive references to websites, in the form of footnotes ... . Examples, very detailed and very well explained, are often centered on business scenarios. The author recommends its use as a textbook in an academic setting. this book makes for an excellent reference manual this book offers an overall description of how business forecasts are made, helping them understand what they pay their data scientists for. (Andrea Paramithiotti, Computing Reviews, March 19, 2024)

Part 1: The Analytics Quest: The Drive for Rich Information.-
1. Decisions, Information, and Data.- 2. A Systems Perspective.- Part
2: Predictive Analytics: Background.- 3. Information Extraction: Basic Time
Series Methods.- 4. Information Extraction: Advanced Time Series Methods.-
5. Information Extraction: Non-Time Series Methods.- 6. Useful Life of a
Predictive Model.- Part 3: Simulation Analytics: Background.- 7. Introduction
to Simulations.- 8. Designing and analyzing a Simulation.- 9. Random Numbers:
The Backbone of Stochastic Simulations.- 10. Examples of Stochastic
Simulations: Monte Carlo Simulations.- Part 4: Melding The Two Analytics.-
11. Melding Predictive and Simulation Analytics.- 12. Applications:
Operational Scale-View.- 13. Applications: Tactical and Strategic Scale-Views.
Walter R. Paczkowski earned his Ph.D. in Economics at Texas A&M University and has worked at AT&T's Analytical Support Center, Market Analysis and Forecasting Division, and Business Research Division.  He was also a Member of the Technical Staff at AT&T Bell Labs before founding Data Analytics Corp., a statistical consulting and data modeling company, in 2001.  Dr. Paczkowski is a part-time lecturer in the Department of Economics and the Department of Statistics at Rutgers University.  He published six books in, what he refers to as, his Analytics Series.  His latest are Business Analytics: Data Science for Business Problems (Springer, 2021) and Modern Survey Analysis: Using Python for Deeper Insights (Springer, 2022).