Preface |
|
xi | |
Part I: The Predictive View |
|
1 | (122) |
|
|
3 | (31) |
|
1.1 Motivating the Predictive Stance |
|
|
4 | (7) |
|
|
11 | (21) |
|
1.2.1 Prediction with Ensembles rather than Models |
|
|
12 | (9) |
|
1.2.2 Hypothesis Testing as Prediction |
|
|
21 | (5) |
|
|
26 | (6) |
|
|
32 | (2) |
|
2 Defining a Predictive Paradigm |
|
|
34 | (33) |
|
|
34 | (7) |
|
|
41 | (6) |
|
2.2.1 Frequentist Parametric Case |
|
|
41 | (2) |
|
2.2.2 Bayesian Parametric Case |
|
|
43 | (3) |
|
|
46 | (1) |
|
|
47 | (16) |
|
|
48 | (3) |
|
|
51 | (5) |
|
|
56 | (2) |
|
2.3.4 Predictivist Approach |
|
|
58 | (5) |
|
2.4 A Unified Framework for Predictive Analysis |
|
|
63 | (4) |
|
|
67 | (19) |
|
3.1 Problem Classes for Models and Predictors |
|
|
68 | (5) |
|
3.2 Interpreting Modeling |
|
|
73 | (2) |
|
3.3 The Dangers of Modeling |
|
|
75 | (3) |
|
3.4 Modeling, Inference, Prediction, and Data |
|
|
78 | (2) |
|
|
80 | (6) |
|
4 Models and Predictors: A Bickering Couple |
|
|
86 | (37) |
|
4.1 Simple Nonparametric Cases |
|
|
87 | (7) |
|
4.2 Fixed Effects Linear Regression |
|
|
94 | (7) |
|
|
101 | (3) |
|
4.4 Comparisons: Regression |
|
|
104 | (4) |
|
|
108 | (3) |
|
4.6 Bayes Classifiers and LDA |
|
|
111 | (4) |
|
|
115 | (1) |
|
4.8 Comparisons: Classification |
|
|
116 | (3) |
|
4.9 A Look Ahead to Part II |
|
|
119 | (4) |
Part II: Established Settings for Prediction |
|
123 | (236) |
|
|
125 | (36) |
|
5.1 Classical Decomposition Model |
|
|
125 | (3) |
|
5.2 Box-Jenkins: Frequentist SARIMA |
|
|
128 | (11) |
|
5.2.1 Predictor Class Identification |
|
|
129 | (3) |
|
5.2.2 Estimating Parameters in an ARMA(p,q) Process |
|
|
132 | (1) |
|
5.2.3 Validation in an ARMA(p,q) Process |
|
|
133 | (2) |
|
|
135 | (4) |
|
|
139 | (3) |
|
|
142 | (8) |
|
|
150 | (6) |
|
5.6 Endnotes: Variations and Extensions |
|
|
156 | (5) |
|
5.6.1 Regression with an ARMA(p,q) Error Term |
|
|
157 | (2) |
|
5.6.2 Dynamic Linear Models |
|
|
159 | (2) |
|
|
161 | (45) |
|
6.1 Predictors Derived from Repeated-Measures ANOVA |
|
|
167 | (5) |
|
6.2 Linear Models for Longitudinal Data |
|
|
172 | (8) |
|
6.3 Predictors Derived from Generalized Linear Models |
|
|
180 | (4) |
|
6.4 Predictors Using Random Effects |
|
|
184 | (10) |
|
6.4.1 Linear Mixed Models |
|
|
184 | (9) |
|
6.4.2 Generalized Linear Mixed Models |
|
|
193 | (1) |
|
6.4.3 Nonlinear Mixed Models |
|
|
194 | (1) |
|
6.5 Computational Comparisons |
|
|
194 | (7) |
|
6.6 Endnotes: More on Growth Curves |
|
|
201 | (5) |
|
6.6.1 A Fixed Effect Growth Curve Model |
|
|
203 | (1) |
|
6.6.2 Another Fixed Effect Technique |
|
|
204 | (2) |
|
|
206 | (43) |
|
7.1 Nonparametric Predictors of Survival |
|
|
208 | (18) |
|
7.1.1 The Kaplan-Meier predictor |
|
|
208 | (8) |
|
7.1.2 Median as a Predictor |
|
|
216 | (3) |
|
7.1.3 Bayes Version of the Kaplan-Meier Predictor |
|
|
219 | (2) |
|
7.1.4 Discrimination and Calibration |
|
|
221 | (1) |
|
7.1.5 Predicting with Medians |
|
|
222 | (4) |
|
7.2 Proportional Hazards Predictors |
|
|
226 | (13) |
|
7.2.1 Frequentist Estimates of h0 and beta in PH Models |
|
|
228 | (3) |
|
7.2.2 Frequentist PH Models as Predictors |
|
|
231 | (2) |
|
|
233 | (3) |
|
7.2.4 Continuing the Example |
|
|
236 | (3) |
|
|
239 | (6) |
|
7.4 Endnotes: Other Models |
|
|
245 | (4) |
|
7.4.1 Accelerated Failure Time (AFT) Models |
|
|
245 | (1) |
|
|
246 | (3) |
|
|
249 | (58) |
|
8.1 Predictors Using Orthonormal Basis Expansions |
|
|
252 | (8) |
|
8.2 Predictors Based on Kernels |
|
|
260 | (15) |
|
8.2.1 Kernel Density Estimation |
|
|
260 | (6) |
|
8.2.2 Kernel Regression: Deterministic Designs |
|
|
266 | (4) |
|
8.2.3 Kernel Regression: Random Design |
|
|
270 | (5) |
|
8.3 Predictors Based on Nearest Neighbors |
|
|
275 | (11) |
|
8.3.1 Nearest Neighbor Density Estimation |
|
|
275 | (6) |
|
8.3.2 Nearest Neighbor Regression |
|
|
281 | (4) |
|
8.3.3 Beyond the Independence Case |
|
|
285 | (1) |
|
8.4 Predictors from Nonparametric Bayes |
|
|
286 | (8) |
|
8.4.1 Polya Tree Process Priors for Distribution Estimation |
|
|
288 | (3) |
|
8.4.2 Gaussian Process Priors for Regression |
|
|
291 | (3) |
|
8.5 Comparing Nonparametric Predictors |
|
|
294 | (8) |
|
8.5.1 Description of the Data, Methods, and Results |
|
|
295 | (5) |
|
8.5.2 M-Complete or M-Open? |
|
|
300 | (2) |
|
|
302 | (5) |
|
|
303 | (1) |
|
8.6.2 Nearest Neighbor Classification |
|
|
304 | (1) |
|
8.6.3 Test-Based Prediction |
|
|
304 | (3) |
|
|
307 | (52) |
|
|
312 | (8) |
|
|
320 | (7) |
|
9.3 Bayes Model Selection |
|
|
327 | (7) |
|
|
334 | (5) |
|
|
339 | (5) |
|
9.6 Markov Chain Monte Carlo and the Metropolis-Hastings Algorithm |
|
|
344 | (4) |
|
9.7 Computed Examples: SA and MCMC-MH |
|
|
348 | (5) |
|
|
353 | (8) |
|
|
354 | (1) |
|
9.8.2 Posterior Predictive Loss |
|
|
354 | (1) |
|
9.8.3 Information-Theoretic Model Selection Procedures |
|
|
355 | (1) |
|
9.8.4 Scoring Rules and BFs Redux |
|
|
356 | (3) |
Part III: Contemporary Prediction |
|
359 | (246) |
|
|
361 | (88) |
|
10.1 Classical Nonlinear Regression |
|
|
364 | (4) |
|
|
368 | (18) |
|
10.2.1 Finding a Good Tree |
|
|
371 | (8) |
|
10.2.2 Pruning and Selection |
|
|
379 | (4) |
|
|
383 | (3) |
|
|
386 | (19) |
|
10.3.1 'Fitting' a Good NN |
|
|
388 | (5) |
|
10.3.2 Choosing an Architecture for an NN |
|
|
393 | (1) |
|
|
394 | (3) |
|
|
397 | (2) |
|
10.3.5 Deep Learning, Convolutional NNs, and All That |
|
|
399 | (6) |
|
|
405 | (17) |
|
10.4.1 Bayes Kernel Predictors |
|
|
409 | (7) |
|
10.4.2 Frequentist Kernel Predictors |
|
|
416 | (6) |
|
|
422 | (7) |
|
|
429 | (14) |
|
10.6.1 Doppler Function Example |
|
|
429 | (4) |
|
10.6.2 Predicting a Vegetation Greenness Index |
|
|
433 | (10) |
|
|
443 | (6) |
|
10.7.1 Projection Pursuit |
|
|
443 | (2) |
|
|
445 | (1) |
|
10.7.3 Hidden Markov Models |
|
|
446 | (1) |
|
10.7.4 Errors-in-Variables Models |
|
|
447 | (2) |
|
|
449 | (75) |
|
11.1 Bayes Model Averaging |
|
|
454 | (8) |
|
|
462 | (9) |
|
|
471 | (9) |
|
|
480 | (9) |
|
11.4.1 Boosting Classifiers |
|
|
481 | (5) |
|
11.4.2 Boosting and Regression |
|
|
486 | (3) |
|
11.5 Median and Related Methods |
|
|
489 | (8) |
|
11.5.1 Different Sorts of 'Median' |
|
|
489 | (5) |
|
11.5.2 Median and Other Components |
|
|
494 | (1) |
|
|
495 | (2) |
|
11.6 Model Average Prediction in Practice |
|
|
497 | (22) |
|
|
497 | (10) |
|
11.6.2 Reanalyzing the Vegout Data |
|
|
507 | (11) |
|
|
518 | (1) |
|
|
519 | (5) |
|
11.7.1 Prediction along a String |
|
|
520 | (2) |
|
|
522 | (2) |
|
12 The Future of Prediction |
|
|
524 | (81) |
|
|
526 | (11) |
|
12.1.1 Collaborative Filtering Recommender Systems |
|
|
526 | (4) |
|
12.1.2 Content-Based (CB) Recommender Systems |
|
|
530 | (3) |
|
|
533 | (3) |
|
|
536 | (1) |
|
|
537 | (19) |
|
12.2.1 Key Examples of Procedures for Streaming Data |
|
|
538 | (9) |
|
|
547 | (4) |
|
12.2.3 Streaming Decisions |
|
|
551 | (5) |
|
12.3 Spatio-Temporal Data |
|
|
556 | (14) |
|
12.3.1 Spatio-Temporal Point Data |
|
|
559 | (3) |
|
12.3.2 Remote Sensing Data |
|
|
562 | (3) |
|
12.3.3 Spatio-Temporal Point Process Data |
|
|
565 | (3) |
|
|
568 | (2) |
|
|
570 | (15) |
|
|
572 | (9) |
|
|
581 | (4) |
|
|
585 | (14) |
|
|
586 | (6) |
|
12.5.2 Combining Data Types |
|
|
592 | (7) |
|
12.6 Topics that Might Have Been Here...But Are Not |
|
|
599 | (1) |
|
12.7 Predictor Properties that Remain to be Studied |
|
|
600 | (2) |
|
|
602 | (3) |
References |
|
605 | (30) |
Index |
|
635 | |