Muutke küpsiste eelistusi

E-raamat: Predictor Feedback for Delay Systems: Implementations and Approximations

  • Formaat - EPUB+DRM
  • Hind: 123,49 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This monograph bridges the gap between the nonlinear predictor as a concept and as a practical tool, presenting a complete theory of the application of predictor feedback to time-invariant, uncertain systems with constant input delays and/or measurement delays. It supplies several methods for generating the necessary real-time solutions to the systems nonlinear differential equations, which the authors refer to as approximate predictors. Predictor feedback for linear time-invariant (LTI) systems is presented in Part I to provide a solid foundation on the necessary concepts, as LTI systems pose fewer technical difficulties than nonlinear systems. Part II extends all of the concepts to nonlinear time-invariant systems. Finally, Part III explores extensions of predictor feedback to systems described by integral delay equations and to discrete-time systems. The books core is the design of control and observer algorithms with which global stabilization, guaranteed in the previous literature with idealized (but non-implementable) predictors, is preserved with approximate predictors developed in the book. An applications-driven engineer will find a large number of explicit formulae, which are given throughout the book to assist in the application of the theory to a variety of control problems. A mathematician will find sophisticated new proof techniques, which are developed for the purpose of providing global stability guarantees for the nonlinear infinite-dimensional delay system under feedback laws employing practically implementable approximate predictors. Researchers working on global stabilization problems for time-delay systems will find this monograph to be a helpful summary of the state of the art, while graduate students in the broad field of systems and control will advance their skills in nonlinear control design and the analysis of nonlinear delay systems.
1 Preview of Predictor Feedback and Delay Compensation
1(18)
1 Introduction
1(1)
2 Predictor Feedback
2(5)
3 Three Different Viewpoints
7(2)
3.1 IDEs
7(1)
3.2 The Hybrid Viewpoint
8(1)
3.3 The Dynamic Viewpoint
8(1)
4 Important Questions
9(2)
5 Background Material
11(4)
5.1 Deterministic Control Systems
12(1)
5.2 Equilibrium Points
13(1)
5.3 Input-to-Output Stability
14(1)
5.4 Asymptotic Gain
15(1)
6 Bibliographical and Historical Notes
15(4)
Part I Linear Systems Under Predictor Feedback
2 Linear Systems with State Measurement
19(40)
1 Introduction
19(1)
2 Basic Case: Undelayed Continuous State Measurement and Continuous Control
20(11)
3 Disturbance Attenuation Limitations Due to Delays
31(4)
4 Approximate Predictors
35(11)
5 Delay-Robustness of Predictor Feedback
46(13)
3 Linear Systems with Output Measurement
59(26)
1 Introduction
59(1)
2 Continuous Output Measurement and Dead-Beat Observers
60(9)
3 Hardest Case: Delayed Sampled Output Measurement and Control Applied with ZOH
69(16)
Part II Nonlinear Systems Under Predictor Feedback
4 Nonlinear Systems with State Measurement
85(70)
1 Introduction
85(1)
2 Basic Case: Continuous Control
86(9)
2.1 General Discussion
86(2)
2.2 Hybrid and Dynamic Implementation
88(7)
3 Input Applied with Zero Order Hold
95(12)
3.1 Nonlinear Case
96(5)
3.2 LTI Systems and DECI Systems
101(6)
4 Approximate Predictors
107(11)
4.1 Globally Lipschitz Systems
108(3)
4.2 Numerical Approximations for the General Case
111(7)
5 Stabilization with Approximate Predictors
118(22)
5.1 Systems Satisfying a Linear Growth Condition
119(6)
5.2 Approximate Predictors with Hybrid Implementation
125(15)
6 Examples
140(15)
6.1 A Globally Lipschitz Example
140(5)
6.2 A Nonlinear System in Strict Feedback Form
145(5)
6.3 Stabilization of a Mobile Robot Over a Long-Distance Communication Network with Arbitrarily Sparse Sampling
150(5)
5 Nonlinear Systems with Output Measurement
155(58)
1 Introduction
155(1)
2 Solution Map Explicitly Known
156(10)
3 Globally Lipschitz Systems
166(15)
4 Systems with a Compact Absorbing Set
181(32)
4.1 Main Result
182(5)
4.2 Auxiliary Results
187(15)
4.3 Proof of Main Result
202(6)
4.4 An Illustrating Example
208(5)
6 Application to the Chemostat
213(16)
1 Introduction
213(2)
2 Anaerobic Digestion
215(4)
2.1 Mathematical Model of Anaerobic Digestion
215(1)
2.2 Steady States of Anaerobic Digestion
216(1)
2.3 Local Asymptotic Stability
216(1)
2.4 Optimal Steady State for Maximal Methane Production
217(1)
2.5 The Need for Control
218(1)
3 The Control System
219(6)
3.1 Forward Completeness
220(2)
3.2 Controllability Analysis
222(1)
3.3 Synthesis of a Globally Stabilizing Control Law
223(2)
4 The Chemostat with Sampled and Delayed Measurements
225(4)
Part III Extensions of Predictor Feedback
7 Systems Described by Integral Delay Equations
229(22)
1 Introduction
229(1)
2 System-Theoretic Properties
230(14)
3 Stability
244(7)
8 Discrete-Time Systems
251(28)
1 Introduction
251(2)
2 A Backstepping Solution
253(8)
3 Lyapunov Redesign
261(9)
4 Robustness to Perturbations of the Delay
270(9)
Notes and Comments for Part I 279(4)
Notes and Comments for Part II 283(2)
Notes and Comments for Part III 285(2)
References 287(8)
Index 295