Muutke küpsiste eelistusi

E-raamat: Principles of Astrophysics: Using Gravity and Stellar Physics to Explore the Cosmos

  • Formaat - PDF+DRM
  • Hind: 80,26 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Based on a series of award-winning lectures, this physics-oriented analysis of astronomical systems will appeal to students both of physics and engineering. It derives the fundamentals of gravity and the formation of the universe from physical principles.



Provides a physics-centered analysis of a broad range of astronomical systems that appeals to a large audience of advanced undergraduate students in physics and engineering

This book gives a survey of astrophysics at the advanced undergraduate level. It originates from a two-semester course sequence at Rutgers University that is meant to appeal not only to astrophysics students but also more broadly to physics and engineering students. The organization is driven more by physics than by astronomy; in other words, topics are first developed in physics and then applied to astronomical systems that can be investigated, rather than the other way around.

The first half of the book focuses on gravity. Gravity is the dominant force in many astronomical systems, so a tremendous amount can be learned by studying gravity, motion and mass. The theme in this part of the book, as well as throughout astrophysics, is using motion to investigate mass. The goal of Chapters 2-11 is to develop a progressively richer understanding of gravity as it applies to objects ranging from planets and moons to galaxies and the universe as a whole. The second half uses other aspects of physics to address one of the big questions. While “Why are we here?” lies beyond the realm of physics, a closely related question is within our reach: “How did we get here?” The goal of Chapters 12-20 is to understand the physics behind the remarkable story of how the Universe, Earth and life were formed. This book assumes familiarity with vector calculus and introductory physics (mechanics, electromagnetism, gas physics and atomic physics); however, all of the physics topics are reviewed as they come up (and vital aspects of vector calculus are reviewed in the Appendix).

Arvustused

From the book reviews:

The book is divided into two parts, each part corresponding to a one semester course. This book is an excellent introduction to astrophysics. It can be used as a text for courses on the subject. Problems are included at the end of each chapter with solutions in the back. Also, each chapter ends with a list of references for further study. (Stephen Wollman, zbMATH, Vol. 1302, 2015)

1 Introduction: Tools of the Trade
1(20)
1.1 What Is Gravity?
1(3)
1.2 Dimensions and Units
4(6)
1.2.1 Fundamental Dimensions
5(1)
1.2.2 Constants of Nature
6(1)
1.2.3 Astrophysical Units
7(1)
1.2.4 Dimensional Analysis
8(2)
1.3 Using the Tools
10(6)
1.3.1 Phases of an Electron Gas
11(3)
1.3.2 Stars, Familiar and Exotic
14(2)
Problems
16(1)
References
17(4)
Part I Using Gravity and Motion to Measure Mass
2 Celestial Mechanics
21(14)
2.1 Motions in the Sky
21(4)
2.2 Laws of Motion
25(3)
2.3 Law of Gravity
28(5)
Problems
33(1)
References
34(1)
3 Gravitational One-Body Problem
35(18)
3.1 Deriving Kepler's Laws
35(5)
3.2 Using Kepler III: Motion —> Mass
40(7)
3.2.1 The Black Hole at the Center of the Milky Way
40(2)
3.2.2 Supermassive Black Holes in Other Galaxies
42(4)
3.2.3 Active Galactic Nuclei
46(1)
3.3 Related Concepts
47(3)
3.3.1 Sphere of Influence
47(2)
3.3.2 Stellar Dynamical Evaporation
49(1)
Problems
50(1)
References
51(2)
4 Gravitational Two-Body Problem
53(26)
4.1 Equivalent One-Body Problem
53(9)
4.1.1 Setup
53(1)
4.1.2 Motion
54(2)
4.1.3 Energy and Angular Momentum
56(1)
4.1.4 Velocity Curve
57(2)
4.1.5 Application to the Solar System
59(2)
4.1.6 Kepler III Revisited
61(1)
4.2 Binary Stars
62(5)
4.2.1 Background: Inclination
62(2)
4.2.2 Visual Binary
64(1)
4.2.3 Spectroscopic Binary
65(2)
4.2.4 Eclipsing Binary
67(1)
4.3 Extrasolar Planets
67(8)
4.3.1 Doppler Planets
68(2)
4.3.2 Transiting Planets
70(3)
4.3.3 Status of Exoplanet Research
73(2)
Problems
75(2)
References
77(2)
5 Tidal Forces
79(10)
5.1 Derivation of the Tidal Force
79(3)
5.2 Effects of Tidal Forces
82(3)
5.2.1 Earth/Moon
82(2)
5.2.2 Jupiter's Moon Io
84(1)
5.2.3 Extrasolar Planets
85(1)
5.3 Tidal Disruption
85(1)
Problems
86(2)
References
88(1)
6 Gravitational Three-Body Problem
89(10)
6.1 Two "Stars" and One "Planet"
89(4)
6.1.1 Theory: Lagrange Points
89(3)
6.1.2 Applications
92(1)
6.2 One "Planet" and Two "Moons"
93(3)
6.2.1 Theory: Resonances
94(1)
6.2.2 Applications
95(1)
Problems
96(2)
References
98(1)
7 Extended Mass Distributions: Spiral Galaxies
99(28)
7.1 Galaxy Properties
99(5)
7.1.1 Luminosity Profiles
101(1)
7.1.2 Concepts of Motion
102(2)
7.2 Equations of Motion
104(1)
7.2.1 Spherical Symmetry
104(1)
7.2.2 Axial Symmetry
105(1)
7.3 Rotational Dynamics
105(9)
7.3.1 Predictions
106(1)
7.3.2 Observations and Interpretation
107(3)
7.3.3 Cold Dark Matter
110(3)
7.3.4 Is Dark Matter Real?
113(1)
7.4 Beyond Rotation
114(10)
7.4.1 Tangential Motion
114(1)
7.4.2 Vertical Motion
115(2)
7.4.3 Radial Motion
117(2)
7.4.4 Application to Spiral Arms
119(5)
Problems
124(2)
References
126(1)
8 N-Body Problem: Elliptical Galaxies
127(16)
8.1 Gravitational N-Body Problem
127(6)
8.1.1 Equations of Motion
127(1)
8.1.2 Conservation of Energy
128(2)
8.1.3 Virial Theorem
130(1)
8.1.4 A Simple Application: N = 2
131(2)
8.2 Elliptical Galaxies
133(4)
8.2.1 Potential Energy
133(2)
8.2.2 Kinetic Energy
135(1)
8.2.3 Mass Estimate
136(1)
8.3 Galaxy Interactions
137(3)
8.3.1 Fly-By
137(2)
8.3.2 Collision
139(1)
8.4 Other N-Body Problems
140(1)
Problems
140(2)
References
142(1)
9 Bending of Light by Gravity
143(34)
9.1 Principles of Gravitational Lensing
143(11)
9.1.1 Gravitational Deflection
143(3)
9.1.2 Lens Equation
146(2)
9.1.3 Lensing by a Point Mass
148(1)
9.1.4 Distortion and Magnification
149(5)
9.1.5 Time Delay
154(1)
9.2 Microlensing
154(7)
9.2.1 Theory
155(1)
9.2.2 Observations
156(1)
9.2.3 Binary Lenses
157(2)
9.2.4 Planets
159(2)
9.3 Strong Lensing
161(7)
9.3.1 Extended Mass Distribution
161(1)
9.3.2 Circular Mass Distribution
162(1)
9.3.3 Singular Isothermal Sphere
163(1)
9.3.4 Singular Isothermal Ellipsoid
164(1)
9.3.5 Spherical Galaxy with External Shear
165(1)
9.3.6 Science with Galaxy Strong Lensing
166(2)
9.4 Weak Lensing
168(3)
Problems
171(4)
References
175(2)
10 Relativity
177(44)
10.1 Space and Time: Classical View
177(1)
10.2 Special Theory of Relativity
178(6)
10.2.1 Lorentz Transformation
179(2)
10.2.2 Loss of Simultaneity
181(1)
10.2.3 Time Dilation
182(1)
10.2.4 Doppler Effect
183(1)
10.2.5 Length Contraction
184(1)
10.3 General Theory of Relativity
184(7)
10.3.1 Concepts of General Relativity
185(1)
10.3.2 Principle of Equivalence
185(1)
10.3.3 Curvature of Spacetime
186(3)
10.3.4 Gravitational Redshift and Time Dilation
189(2)
10.4 Applications of General Relativity
191(8)
10.4.1 Mercury's Perihelion Shift (1916)
191(2)
10.4.2 Bending of Light (1919)
193(1)
10.4.3 Gravitational Redshift on Earth (1960)
193(1)
10.4.4 Gravitational Redshift from a White Dwarf (1971)
194(1)
10.4.5 Flying Clocks (1971)
195(3)
10.4.6 Global Positioning System (1989)
198(1)
10.5 Mathematics of Relativity
199(5)
10.5.1 Spacetime Interval
199(2)
10.5.2 4-Vectors
201(2)
10.5.3 Relativistic Momentum and Energy
203(1)
10.6 Black Holes
204(12)
10.6.1 Schwarzschi Id Metric
204(2)
10.6.2 Spacetime Geometry
206(1)
10.6.3 Particle in a Circular Orbit
207(2)
10.6.4 General Motion Around a Black Hole
209(4)
10.6.5 Gravitational Deflection
213(3)
10.7 Other Effects
216(1)
Problems
217(2)
References
219(2)
11 Cosmology: Expanding Universe
221(22)
11.1 Hubble's Law and the Expanding Universe
221(1)
11.2 Relativistic Cosmology
222(7)
11.2.1 Robertson-Walker Metric
223(1)
11.2.2 The Friedmann Equation
224(3)
11.2.3 Einstein's Greatest Blunder
227(1)
11.2.4 FRW Cosmology
228(1)
11.3 Observational Cosmology
229(8)
11.3.1 Cosmological Redshift
230(1)
11.3.2 Cosmological Distances
231(2)
11.3.3 Results
233(4)
Problems
237(2)
References
239(4)
Part II Using Stellar Physics to Explore the Cosmos
12 Planetary Atmospheres
243(20)
12.1 Kinetic Theory of Gases
243(8)
12.1.1 Temperature and the Boltzmann Distribution
243(1)
12.1.2 Maxwell-Boltzmann Distribution of Particle Speeds
244(3)
12.1.3 Pressure and the Ideal Gas Law
247(2)
12.1.4 Assumptions in the Ideal Gas Law
249(2)
12.2 Hydrostatic Equilibrium
251(1)
12.3 Planetary Atmospheres
252(7)
12.3.1 Density Profile
252(2)
12.3.2 Exosphere
254(1)
12.3.3 Evaporation
255(4)
Problems
259(2)
Reference
261(2)
13 Planetary Temperatures
263(22)
13.1 Blackbody Radiation
263(6)
13.1.1 Luminosity
263(1)
13.1.2 Spectrum
264(3)
13.1.3 Color
267(1)
13.1.4 Pressure
268(1)
13.2 Predicting Planet Temperatures
269(1)
13.3 Atmospheric Heating
270(4)
13.3.1 One Layer
271(1)
13.3.2 Many Layers
272(2)
13.3.3 Optical Depth
274(1)
13.4 Interaction of Light with Matter
274(5)
13.4.1 Photoionization
275(1)
13.4.2 Electron Excitation
276(1)
13.4.3 Molecular Vibration
276(2)
13.4.4 Molecular Rotation
278(1)
13.4.5 Recap
279(1)
13.5 Greenhouse Effect and Climate Change
279(3)
13.5.1 Earth
279(2)
13.5.2 Venus
281(1)
Problems
282(1)
References
283(2)
14 Stellar Atmospheres
285(14)
14.1 Atomic Excitation and Ionization
285(8)
14.1.1 Energy Level Occupation
287(1)
14.1.2 Ionization Stages
287(2)
14.1.3 Application to Hydrogen
289(4)
14.2 Stellar Spectral Classification
293(2)
Problems
295(2)
References
297(2)
15 Nuclear Fusion
299(26)
15.1 What Powers the Sun?
299(2)
15.2 Physics of Fusion
301(9)
15.2.1 Mass and Energy Scales
301(1)
15.2.2 Requirements for Fusion
302(3)
15.2.3 Cross Section
305(2)
15.2.4 Reaction Rate
307(3)
15.3 Nuclear Reactions in Stars
310(5)
15.3.1 Cast of Characters
310(1)
15.3.2 Masses and Binding Energies
311(1)
15.3.3 Burning Hydrogen Into Helium
312(3)
15.4 Solar Neutrinos
315(6)
15.4.1 Neutrino Production in the Sun
315(1)
15.4.2 Neutrino Detection (I)
316(1)
15.4.3 Neutrino Oscillations
317(1)
15.4.4 Neutrino Detection (II)
318(3)
Problems
321(2)
References
323(2)
16 Stellar Structure and Evolution
325(26)
16.1 Energy Transport
325(6)
16.1.1 Conduction
325(4)
16.1.2 Convection
329(2)
16.2 Stellar Models
331(7)
16.2.1 Equations of Stellar Structure
332(2)
16.2.2 The Sun
334(1)
16.2.3 Other Stars
335(3)
16.3 Evolution of Low-Mass Stars (M < or ~ to 8 M)
338(3)
16.3.1 Hydrogen, Helium, and Beyond
338(2)
16.3.2 Observations
340(1)
16.4 Evolution of High-Mass Stars (M > or ~ to 8 M)
341(6)
16.4.1 Beyond Carbon and Oxygen
342(1)
16.4.2 Explosion: Supernova
343(3)
16.4.3 Beyond Iron
346(1)
Problems
347(2)
References
349(2)
17 Stellar Remnants
351(14)
17.1 Cold, Degenerate Gas
351(2)
17.2 White Dwarfs
353(8)
17.2.1 Equation of State
354(1)
17.2.2 Polytropic Stars
354(4)
17.2.3 Testing the Theory
358(3)
17.3 Neutron Stars and Pulsars
361(1)
Problems
362(2)
References
364(1)
18 Charting the Universe with Stars
365(12)
18.1 Stellar Pulsations
365(5)
18.1.1 Observations
365(2)
18.1.2 Theory
367(3)
18.2 Standard Candles
370(4)
Problems
374(1)
References
375(2)
19 Star and Planet Formation
377(18)
19.1 Gravitational Collapse
377(5)
19.1.1 Equilibrium: Virial Temperature
377(2)
19.1.2 Conditions for Collapse
379(1)
19.1.3 Fragmentation
380(2)
19.1.4 Collapse Time Scale
382(1)
19.2 Gas Cooling
382(2)
19.3 Halting the Collapse
384(4)
19.3.1 Cessation of Cooling
385(1)
19.3.2 Radiation Pressure
385(2)
19.3.3 Other Effects
387(1)
19.4 Protoplanetary Disks
388(3)
19.4.1 Temperature Structure
388(1)
19.4.2 Picture of Planet Formation
389(2)
Problems
391(2)
References
393(2)
20 Cosmology: Early Universe
395(18)
20.1 Cosmic Microwave Background Radiation
395(6)
20.1.1 Hot Big Bang
396(1)
20.1.2 Theory: Recombination Temperature
397(1)
20.1.3 Observations
398(2)
20.1.4 Implications
400(1)
20.2 Big Bang Nucleosynthesis
401(7)
20.2.1 Theory: "The First Three Minutes"
401(4)
20.2.2 Observations: Primordial Abundances
405(3)
20.3 How Did We Get Here?
408(1)
Problems
408(1)
References
409(4)
Part III Appendices
A Technical Background
413(10)
A.1 Cartesian and Polar Coordinates
413(2)
A.2 Cylindrical and Spherical Coordinates
415(1)
A.3 Rotating Reference Frame
416(2)
A.4 Angular Momentum
418(1)
A.5 Taylor Series Approximation
419(1)
A.6 Numerical Solution of Differential Equations
420(1)
A.7 Useful Integrals
421(1)
References
422(1)
B Solutions
423(6)
Index 429
Charles Keeton earned a B.A. in Physics (summa cum laude) from Cornell University in 1994, and a Ph.D. in Physics from Harvard University in 1998. He held the Bart J. Bok Fellowship at the University of Arizona and a NASA Hubble Fellowship at the University of Chicago before joining the faculty of Rutgers University in 2004. Keeton has published 89 refereed journal articles in major international astronomy journals. He has received the following awards: 2007: Rutgers Society of Physics Students, Outstanding Teacher Award 2010: White House, Presidential Early Career Award for Scientists and Engineers 2010: Rutgers University, Presidential Fellowship for Teaching Excellence 2010: Rutgers University, Board of Trustees Fellowship for Scholarly Excellence In 2011, Keeton was named Faculty Director of the Aresty Research Center for Undergraduates at Rutgers University.