Muutke küpsiste eelistusi

E-raamat: Principles of Data Mining and Knowledge Discovery: Third European Conference, PKDD'99 Prague, Czech Republic, September 15-18, 1999 Proceedings

Edited by , Edited by
  • Formaat - PDF+DRM
  • Hind: 110,53 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book constitutes the refereed proceedings of the Third European Conference on Principles and Practice of Knowledge Discovery in Databases, PKDD'99, held in Prague, Czech Republic in September 1999.
The 28 revised full papers and 48 poster presentations were carefully reviewed and selected from 106 full papers submitted. The papers are organized in topical sections on time series, applications, taxonomies and partitions, logic methods, distributed and multirelational databases, text mining and feature selection, rules and induction, and interesting and unusual issues.

Muu info

Springer Book Archives
Session 1A - Time Series.- Scaling up Dynamic Time Warping to Massive
Datasets.- The Haar Wavelet Transform in the Time Series Similarity
Paradigm.- Rule Discovery in Large Time-Series Medical Databases.- Session 1B
- Applications.- Simultaneous Prediction of Multiple Chemical Parameters of
River Water Quality with TILDE.- Applying Data Mining Techniques to Wafer
Manufacturing.- An Application of Data Mining to the Problem of the
University Students Dropout Using Markov Chains.- Session 2A - Taxonomies
and Partitions.- Discovering and Visualizing Attribute Associations Using
Bayesian Networks and Their Use in KDD.- Taxonomy Formation by Approximate
Equivalence Relations, Revisited.- On the Use of Self-Organizing Maps for
Clustering and Visualization.- Speeding Up the Search for Optimal
Partitions.- Session 2B - Logic Methods.- Experiments in Meta-level Learning
with ILP.- Boolean Reasoning Scheme with Some Applications in Data Mining.-
On the Correspondence between Classes of Implicational and Equivalence
Quantifiers.- Querying Inductive Databases via Logic-Based User-Defined
Aggregates.- Session 3A - Distributed and Multirelational Databases.-
Peculiarity Oriented Multi-database Mining.- Knowledge Discovery in Medical
Multi-databases: A Rough Set Approach.- Automated Discovery of Rules and
Exceptions from Distributed Databases Using Aggregates.- Session 3B - Text
Mining and Feature Selection.- Text Mining via Information Extraction.-
TopCat: Data Mining for Topic Identification in a Text Corpus.- Selection and
Statistical Validation of Features and Prototypes.- Session 4A - Rules and
Induction.- Taming Large Rule Models in Rough Set Approaches.- Optimizing
Disjunctive Association Rules.- Contribution of Boosting in Wrapper Models.-
Experiments on a Representation-Independent Top-Down and Prune Induction
Scheme.- Session 5A - Interesting and Unusual.- Heuristic Measures of
Interestingness.- Enhancing Rule Interestingness for Neuro-fuzzy Systems.-
Unsupervised Profiling for Identifying Superimposed Fraud.- OPTICS-OF:
Identifying Local Outliers.- Posters.- Selective Propositionalization for
Relational Learning.- Circle Graphs: New Visualization Tools for
Text-Mining.- On the Consistency of Information Filters for Lazy Learning
Algorithms.- Using Genetic Algorithms to Evolve a Rule Hierarchy.- Mining
Temporal Features in Association Rules.- The Improvement of Response
Modeling: Combining Rule-Induction and Case-Based Reasoning.- Analyzing an
Email Collection Using Formal Concept Analysis.- Business Focused Evaluation
Methods: A Case Study.- Combining Data and Knowledge by MaxEnt-Optimization
of Probability Distributions.- Handling Missing Data in Trees: Surrogate
Splits or Statistical Imputation?.- Rough Dependencies as a Particular Case
of Correlation: Application to the Calculation of Approximative Reducts.- A
Fuzzy Beam-Search Rule Induction Algorithm.- An Innovative GA-Based Decision
Tree Classifier in Large Scale Data Mining.- Extension to C-means Algorithm
for the Use of Similarity Functions.- Predicting Chemical Carcinogenesis
Using Structural Information Only.- LA A Clustering Algorithm with an
Automated Selection of Attributes, Which is Invariant to Functional
Transformations of Coordinates.- Association Rule Selection in a Data Mining
Environment.- Multi-relational Decision Tree Induction.- Learning of Simple
Conceptual Graphs from Positive and Negative Examples.- An Evolutionary
Algorithm Using Multivariate Discretization for Decision Rule Induction.-
ZigZag, a New Clustering Algorithm to Analyze Categorical Variable
Cross-Classification Tables.- Efficient Mining of High Confidence Association
Rules without Support Thresholds.- A Logical Approach to Fuzzy Data
Analysis.- AST: Support for Algorithm Selection with a CBR Approach.-
Efficient Shared Near Neighbours Clustering of Large Metric Data Sets.-
Discovery of Interesting Data Dependencies from a Workload of SQL
Statements.- Learning from Highly Structured Data by Decomposition.-
Combinatorial Approach for Data Binarization.- Extending Attribute-Oriented
Induction as a Key-Preserving Data Mining Method.- Automated Discovery of
Polynomials by Inductive Genetic Programming.- Diagnosing Acute Appendicitis
with Very Simple Classification Rules.- Rule Induction in Cascade Model Based
on Sum of Squares Decomposition.- Maintenance of Discovered Knowledge.- A
Divisive Initialisation Method for Clustering Algorithms.- A Comparison of
Model Selection Procedures for Predicting Turning Points in Financial Time
Series.- Mining Lemma Disambiguation Rules from Czech Corpora.- Adding
Temporal Semantics to Association Rules.- Studying the Behavior of
Generalized Entropy in Induction Trees Using a M-of-N Concept.- Discovering
Rules in Information Trees.- Mining Text Archives: Creating Readable Maps to
Structure and Describe Document Collections.- Neuro-fuzzy Data Mining for
Target Group Selection in Retail Banking.- Mining Possibilistic Set-Valued
Rules by Generating Prime Disjunctions.- Towards Discovery of Information
Granules.- Classification Algorithms Based on Linear Combinations of
Features.- Managing Interesting Rules in Sequence Mining.- Support Vector
Machines for Knowledge Discovery.- Regression by Feature Projections.-
Generating Linguistic Fuzzy Rules for Pattern Classification with Genetic
Algorithms.- Tutorials.- Data Mining for Robust Business Intelligence
Solutions.- Query Languages for Knowledge Discovery in Databases.- The ESPRIT
Project CreditMine and its Relevance for the Internet Market.- Logics and
Statistics for Association Rules and Beyond.- Data Mining for the Web.-
Relational Learning and Inductive Logic Programming Made Easy.