Muutke küpsiste eelistusi

E-raamat: Principles of Flight for Pilots

(Ground Training Services, Bournemouth/Hurn), Series edited by (Parker Aerospace Group, USA), Series edited by (MIT), Series edited by (BAE Systems, UK), Series edited by (University of Liverpool, UK)
  • Formaat: EPUB+DRM
  • Sari: Aerospace Series
  • Ilmumisaeg: 24-Jun-2011
  • Kirjastus: John Wiley & Sons Inc
  • Keel: eng
  • ISBN-13: 9781119957638
Teised raamatud teemal:
  • Formaat - EPUB+DRM
  • Hind: 80,21 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Raamatukogudele
  • Formaat: EPUB+DRM
  • Sari: Aerospace Series
  • Ilmumisaeg: 24-Jun-2011
  • Kirjastus: John Wiley & Sons Inc
  • Keel: eng
  • ISBN-13: 9781119957638
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Organised and written as an accessible study guide for student pilots wishing to take commercial ground examinations to obtain ATPL or CPL licenses, Principles of Flight for Pilots also provides a reliable up-to-date reference for qualified and experienced personnel wishing to further improve their understanding of the Principles of Flight and related subjects. Providing a unique aerodynamics reference tool, unlike any book previously Principles of Flight for Pilots explains in significant depth all the topics necessary to pass the Principles of Flight examination as required by the EASA syllabus.

Aviation ground instructor Peter J. Swatton, well reputed for his previous works in the field of pilot ground training, presents the subject in seven parts including basic aerodynamics; level flight aerodynamics; stability; manoeuvre aerodynamics; and other aerodynamic considerations. Each chapter includes self-assessed questions, 848 in total spread over eighteen chapters, with solutions provided at the end of the book containing full calculations and explanations.

Arvustused

Organised and written as an accessible study guide for student pilots wishing to take commercial ground examinations to obtain ATPL or CPL licenses, Principles of Flight for Pilots also provides a reliable up-to-date reference for qualified and experienced personnel wishing to further improve their understanding of the Principles of Flight and related subjects." (Expofairs, 27 April 2013)

"Organised and written as an accessible study guide for student pilots wishing to take commercial ground examinations to obtain ATPL or CPL licenses, Principles of Flight for Pilots also provides a reliable up-to-date reference for qualified and experienced personnel wishing to further improve their understanding of the Principles of Flight and related subjects." (Aeroweb-fr.net, 1 March 2011)

Series Preface xxi
Preface xxiii
Acknowledgements xxv
List of Abbreviations
xxvii
Weight and Mass xxxi
PART 1 THE PRELIMINARIES
1(32)
1 Basic Principles
3(16)
1.1 The Atmosphere
3(1)
1.2 The Composition of Air
3(1)
1.2.1 The Measurement of Temperature
3(1)
1.2.2 Air Density
4(1)
1.3 The International Standard Atmosphere
4(3)
1.3.1 ISA Deviation
5(1)
1.3.2 JSA Deviation
5(1)
1.3.3 Height and Altitude
6(1)
1.3.4 Pressure Altitude
7(1)
1.3.5 Density Altitude
7(1)
1.4 The Physical Properties of Air
7(1)
1.4.1 Fluid Pressure
7(1)
1.4.2 Static Pressure
7(1)
1.4.3 Dynamic Pressure
7(1)
1.5 Newton's Laws of Motion
8(1)
1.5.1 Definitions
8(1)
1.5.2 First Law
8(1)
1.5.3 Second Law
8(1)
1.5.4 Third Law
9(1)
1.6 Constant-Acceleration Formulae
9(1)
1.7 The Equation of Impulse
9(1)
1.8 The Basic Gas Laws
10(1)
1.8.1 Boyles Law
10(1)
1.8.2 Charles' Law
10(1)
1.8.3 Pressure Law
10(1)
1.8.4 The Ideal Gas Equation
10(1)
1.9 The Conservation Laws
11(1)
1.10 Bernoulli's Theorem
11(1)
1.10.1 Viscosity
11(1)
1.11 The Equation of Continuity
12(1)
1.12 Reynolds Number
12(1)
1.12.1 Critical Reynolds Number (Recrit)
13(1)
1.13 Units of Measurement
13(2)
Self-Assessment Exercise 1
15(4)
2 Basic Aerodynamic Definitions
19(14)
2.1 Aerofoil Profile
19(1)
2.2 Aerofoil Attitude
20(1)
2.3 Wing Shape
21(2)
2.4 Wing Loading
23(1)
2.5 Weight and Mass
24(1)
2.5.1 The Newton
24(1)
2.6 Airspeeds
24(2)
2.6.1 Airspeed Indicator Reading (ASIR)
24(1)
2.6.2 Indicated Airspeed (IAS)
25(1)
2.6.3 Calibrated Airspeed (CAS)
25(1)
2.6.4 Rectified Airspeed (RAS)
25(1)
2.6.5 Equivalent Airspeed (EAS)
25(1)
2.6.6 True Airspeed (TAS)
25(1)
2.6.7 Mach Number
26(1)
2.7 Speed Summary
26(1)
2.8 The Effect of Altitude on Airspeeds
27(2)
2.8.1 a. Below the Tropopause
27(1)
2.8.2 b. Above the Tropopause
27(2)
Self-Assessment Exercise 2
29(4)
PART 2 BASIC AERODYNAMICS
33(46)
3 Basic Control
35(20)
3.1 Aeroplane Axes and Planes of Rotation
35(1)
3.1.1 The Longitudinal or Roll Axis
35(1)
3.1.2 The Lateral or Pitch Axis
35(1)
3.1.3 The Normal or Yaw Axis
35(1)
3.2 The Flight Controls
35(2)
3.3 The Elevators
37(1)
3.4 Pitch Control
37(2)
3.4.1 Control Surface Area
38(1)
3.4.1.1 Control Surface Angular Deflection
38(1)
3.4.2 The Moment Arm
38(1)
3.4.3 Angle of Attack
38(1)
3.5 Alternative Pitch Controls
39(1)
3.5.1 Variable Incidence Tailplane
39(1)
3.5.2 The Stabilator
40(1)
3.5.3 The Elevons
40(1)
3.6 The Rudder
40(1)
3.7 Yaw Control
41(1)
3.7.1 Control-Surface Area
41(1)
3.7.1.1 Control-Surface Deflection
41(1)
3.7.2 The Moment Arm
41(1)
3.7.2.1 Engine-Induced Yaw
41(1)
3.8 Asymmetric Engine Yawing Moment
42(1)
3.8.1 Critical Power Unit
42(1)
3.9 Asymmetric Rolling Moment
43(1)
3.10 Minimum Control Speeds
44(2)
3.10.0.1 For Take-off
44(1)
3.10.0.2 For Landing
44(1)
3.10.1 Vmc
44(1)
3.10.2 Vmcg
44(1)
3.10.2.1 The Effect of the Variables on VMCG and VMC
45(1)
3.10.3 VMCL
45(1)
3.10.4 VMCL(1out)
45(1)
3.10.5 VMCL-2
46(1)
3.10.5.1 The Effect of the Variables on VMCL
46(1)
3.11 The Ailerons
46(1)
3.12 Roll Control
46(1)
3.12.1 The Flaperon
47(1)
3.13 Wing Twist
47(1)
3.14 Geometric Twist
47(1)
3.15 Aerodynamic Twist
47(2)
3.15.1 Twisterons
48(1)
3.16 High-Speed Twist
49(2)
3.16.1 Low-Speed Ailerons
49(1)
3.16.2 High-Speed Ailerons
49(1)
3.16.3 Roll Spoilers
50(1)
Self-Assessment Exercise 3
51(4)
4 Lift Generation
55(24)
4.1 Turbulent Flow
55(1)
4.2 Streamline Flow
55(2)
4.3 The Boundary Layer
57(1)
4.4 The Laminar Boundary Layer
58(1)
4.4.1 The Transition Point
58(1)
4.5 The Turbulent Boundary Layer
58(1)
4.5.1 Leading-Edge Separation
59(1)
4.6 Boundary-Layer Control
59(2)
4.6.1 Blowing
59(1)
4.6.2 Suction
60(1)
4.6.3 Vortex Generators
60(1)
4.7 Two-Dimensional Flow
61(1)
4.8 The Stagnation Point
61(1)
4.8.1 Aerofoil Upper-Surface Airflow
61(1)
4.8.2 Aerofoil Lower-Surface Airflow
61(1)
4.9 Lift Production
62(2)
4.9.1 Symmetrical Aerofoils
62(1)
4.9.2 Cambered Aerofoils
62(2)
4.9.2.1 a. Negative Angles of Attack
64(1)
4.9.2.2 b. Small Positive Angles of Attack
64(1)
4.9.2.3 c. Large Positive Angles of Attack
64(1)
4.10 The Centre of Pressure (CP)
64(1)
4.11 Pitching Moments
65(2)
4.12 The Aerodynamic Centre
67(1)
4.13 Three-Dimensional Flow
68(1)
4.14 Wing-Tip Vortices
68(2)
4.15 Wake Turbulence
70(1)
4.16 Spanwise Lift Distribution
70(5)
4.16.1 The Effect of Wing Planform
70(5)
Self-Assessment Exercise 4
75(4)
PART 3 LEVEL-FLIGHT AERODYNAMICS
79(152)
5 Lift Analysis
81(18)
5.1 The Four Forces
81(1)
5.2 Mass
81(1)
5.3 Lift Analysis
82(2)
5.4 The Factors Affecting CL
84(1)
5.5 The Effect of Angle of Attack
84(1)
5.6 The Effect of the Wing Shape
85(4)
5.6.1 The Effect of Leading-Edge Radius
86(1)
5.6.2 The Effect of Camber
86(1)
5.6.3 The Effect of Aspect Ratio
87(1)
5.6.4 The Wing Planform
88(1)
5.6.4.1 The Effect of Sweepback
88(1)
5.7 The Effect of Airframe-Surface Condition
89(2)
5.8 The Effect of Reynolds Number
91(1)
5.9 The Relationship between Speeds, Angles of Attack and CL
92(1)
5.10 Aerofoil Profiles
93(2)
5.10.1 High-Lift Aerofoils
93(1)
5.10.2 General-Purpose Acrofoils
94(1)
5.10.3 High-Speed Aerofoils
94(1)
Self-Assessment Exercise 5
95(4)
6 Lift Augmentation
99(20)
6.1 Wing Loading
99(1)
6.2 CLmax Augmentation
99(1)
6.3 Slats
100(3)
6.3.1 Automatic Slats
101(2)
6.3.2 Manual Slats
103(1)
6.4 Slots
103(1)
6.5 Leading-Edge Flaps
103(3)
6.5.1 The Krueger Flap
105(1)
6.5.2 The Drooped Leading Edge
106(1)
6.6 Trailing-Edge Flaps
106(7)
6.6.1 The Plain Trailing-Edge Flap
107(1)
6.6.2 The Split Trailing-Edge Flap
108(1)
6.6.3 The Slotted Trailing-Edge Flap
108(1)
6.6.4 The Fowler Flap
109(1)
6.6.4.1 The Effect of Trailing-Edge Flaps
110(1)
6.6.5 Leading- and Trailing-Edge Combinations
110(2)
6.6.5.1 The Effect of Sweepback on Flap
112(1)
Self-Assessment Exercise 6
113(6)
7 Drag
119(34)
7.1 Parasite (Profile) Drag
119(1)
7.2 Surface-Friction Drag
120(1)
7.2.0.1 Surface Area
120(1)
7.2.0.2 Coefficient of Viscosity
120(1)
7.2.0.3 Rate of Change of Airspeed
120(1)
7.2.1 Flow Transition
120(1)
7.2.1.1 Surface Condition
121(1)
7.2.1.2 Speed and Size
121(1)
7.2.1.3 Adverse Pressure Gradient
121(1)
7.3 Form (Pressure) Drag
121(1)
7.3.1 Interference Drag
122(1)
7.4 Induced Drag
122(5)
7.4.1 The Effect of Speed
123(2)
7.4.2 The Effect of Mass
125(1)
7.4.3 The Effect of Planform
125(1)
7.4.4 The Effect of Sweepback
125(1)
7.4.5 The Effect of Aspect Ratio
126(1)
7.4.6 The Effect of Flap
126(1)
7.4.7 The Effect of the CG Position
126(1)
7.4.8 Effects Summary
127(1)
7.5 Ground Effect
127(1)
7.6 Wing-Tip Design
128(1)
7.7 Wingspan Loading
129(1)
7.8 The Coefficient of Induced Drag (CDI)
129(1)
7.9 Total Drag
130(1)
7.10 Analysis of the Total-Drag Curve
130(1)
7.11 The Velocity of Minimum Drag (VIMD)
130(2)
7.12 The Velocity of Minimum Power (VIMP)
132(1)
7.13 The Maximum EAS/Drag Ratio (VI/DMAX) Speed
132(1)
7.14 Speed Stability and Instability
133(1)
7.15 The Effect of the Variables on Total Drag
134(2)
7.15.1 The Effect of Altitude
134(1)
7.15.2 The Effect of Mass
134(1)
7.15.3 The Effect of Flap
134(2)
7.16 The CL v CD Polar Diagram
136(1)
7.17 Analysis of the Lift/Drag Ratio
137(2)
7.17.1 The Effect of Flap
138(1)
7.17.2 The Effect of Aspect Ratio
138(1)
7.17.3 The Effect of Mass
139(1)
7.18 Drag Augmentation
139(1)
7.19 Airbrakes
139(1)
7.20 Spoilers
139(3)
7.20.1 Flight Spoilers
139(1)
7.20.2 Ground Spoilers
140(1)
7.20.3 Roll Spoilers
141(1)
7.21 Barn-Door Flaps
142(1)
7.22 Drag Parachutes
142(1)
Self-Assessment Exercise 7
143(10)
8 Stalling
153(36)
8.0.1 The Stall
153(1)
8.1 The Boundary Layer
153(1)
8.2 Boundary-Layer Separation
154(2)
8.2.1 Trailing-Edge Separation
154(1)
8.2.2 Leading-Edge Separation
155(1)
8.3 The Low-Speed Stalling Angle
156(1)
8.4 Factors Affecting the Low-Speed Stalling Angle
156(3)
8.4.1 Slat/Flap Setting
156(1)
8.4.2 Ice Accretion
157(1)
8.4.3 Effect on Take-off and Landing
158(1)
8.4.3.1 Take-Off
158(1)
8.4.3.2 Landing
158(1)
8.4.3.3 Reduced Stalling Angle
159(1)
8.4.3.4 Abnormal Stalling Characteristics
159(1)
8.4.4 Heavy Rain
159(1)
8.5 The Effect of Wing Design on the Low-Speed Stall
159(2)
8.5.1 Swept Wings
160(1)
8.5.2 Elliptical Wings
161(1)
8.5.3 Rectangular Wings
161(1)
8.5.4 Straight Tapered Wings
161(1)
8.6 Spanwise-Flow Attenuation Devices
161(3)
8.6.1 The Wing Fence
162(1)
8.6.2 The Sawtooth Leading Edge
162(1)
8.6.3 The Notched Leading Edge
162(1)
8.6.4 Vortex Generators
162(2)
8.7 Wing-Tip Stalling
164(1)
8.7.1 The Effect of Flap
164(1)
8.7.2 The Prevention of Wing-Tip Stalling
165(1)
8.7.2.1 a. Washout
165(1)
8.7.2.2 b. Root Spoiler
165(1)
8.7.2.3 c. Changing Camber
165(1)
8.7.2.4 d. Slats and Slots
165(1)
8.7.2.5 e. Aspect Ratio
165(1)
8.8 Stalling Characteristics
165(1)
8.8.1 Ideal Stalling Characteristics
165(1)
8.8.2 Swept-Wing Stalling Characteristics
166(1)
8.9 Summary of Factors Affecting the Stalling Angle
166(1)
8.10 Aerodynamic Stall Warning
166(1)
8.11 Mechanical Stall Warning
167(1)
8.11.1 The Flapper Switch
167(1)
8.11.2 The Angle of Attack Sensor
167(1)
8.11.3 Stick Shakers
168(1)
8.11.4 Stick Pushers
168(1)
8.12 Stalling Speed
168(1)
8.13 Factors Affecting Stalling Speed
169(1)
8.14 Centre of Gravity (CG)
169(1)
8.14.1 Forward CG
169(1)
8.14.1.1 Disadvantage
169(1)
8.14.1.2 Advantage
169(1)
8.14.2 Aft CG
169(1)
8.14.2.1 Disadvantage
170(1)
8.14.2.2 Advantage
170(1)
8.15 Mass
170(1)
8.16 Altitude
171(1)
8.17 Configuration
171(1)
8.18 Ice Accretion
171(1)
8.19 Wing Planform
172(1)
8.20 Summary of Factor Effects on Stalling Speed
172(1)
8.21 The Speed Boundary
172(1)
8.22 The Effect of a Gust on the Load Factor
173(1)
8.23 Turn Stalling Speed
174(1)
8.24 Stalling-Speed Definitions
174(3)
8.24.1 VCLmax
175(1)
8.24.2 VMS
175(1)
8.24.3 VMSO
175(1)
8.24.4 VMS1
175(1)
8.24.5 VS
176(1)
8.24.6 VSO
176(1)
8.24.7 VS1
176(1)
8.24.8 VS1g
176(1)
8.24.9 VSR
176(1)
8.24.10 VSRO
176(1)
8.24.11 VSR1
176(1)
8.25 The Deep Stall
177(1)
8.26 The Accelerated Stall
177(1)
8.27 The Power-On Stall
177(1)
8.28 The Shock Stall
178(1)
8.29 Stall Recovery
178(1)
8.29.1 The Low-speed Stall
178(1)
8.29.2 The Deep Stall
178(1)
8.29.3 The Accelerated Stall
178(1)
8.29.4 The Power-On Stall
179(1)
8.29.5 The Shock Stall
179(1)
8.30 The Spin
179(2)
Self-Assessment Exercise 8
181(8)
9 Thrust and Power in Level Flight
189(18)
9.1 Thrust
189(1)
9.2 Analysis of the Thrust Curves
189(2)
9.2.1 Thrust Available
189(1)
9.2.2 Thrust Required
190(1)
9.2.2.1 Maximum Speed (EAS)
190(1)
9.3 The Effect of the Variables on Thrust
191(5)
9.3.1 Altitude
191(2)
9.3.2 Mass
193(1)
9.3.3 Asymmetric Flight
193(2)
9.3.4 Centre of Gravity
195(1)
9.4 Power
196(1)
9.5 Analysis of the Power Curves
196(2)
9.5.1 Maximum TAS
197(1)
9.5.2 VMP and VMD
197(1)
9.6 The Effect of the Variables on Power
198(3)
9.6.1 Altitude
198(2)
9.6.2 Mass
200(1)
9.7 Summary
201(2)
Self-Assessment Exercise 9
203(4)
10 Advanced Control
207(24)
10.1 Wing Torsion and Flexing
207(1)
10.2 Wing Flutter
207(1)
10.3 Torsional Flexural Flutter
207(3)
10.4 Aileron Flutter
210(3)
10.4.1 Torsional Aileron Flutter
210(1)
10.4.2 Flexural Aileron Flutter
211(1)
10.4.2.1 The Mass Balance
212(1)
10.5 Divergence
213(1)
10.6 Control Secondary Effects
213(1)
10.7 Adverse Yaw
213(1)
10.8 Counteraction Devices
214(1)
10.8.1 Rudder/Aileron Coupling
214(1)
10.8.2 Slot/Aileron Coupling
214(1)
10.8.3 Spoiler/Aileron Coupling
214(1)
10.8.4 Differential Aileron Deflection
214(1)
10.8.5 Frise Ailerons
214(1)
10.9 Control-Surface Operation
215(1)
10.10 Aerodynamic Balance Methods
216(5)
10.10.1 The Hinge Balance
216(1)
10.10.2 The Horn Balance
216(1)
10.10.3 The Internal Balance
217(1)
10.10.4 The Balance Tab
217(1)
10.10.5 The Antibalance Tab
218(1)
10.10.6 The Spring Tab
218(2)
10.10.7 The Servo Tab
220(1)
10.11 Primary Control-Surface Trimming
221(2)
10.11.1 Variable Trim Tabs
222(1)
10.11.2 Fixed Trim Tabs
222(1)
10.11.3 Stabilizer Trim Setting
222(1)
10.12 Powered Controls
223(1)
10.13 Power-Assisted Controls
223(1)
10.14 Fully Powered Controls
223(2)
10.14.1 Artificial Feel
224(1)
10.14.1.1 The Simple System
224(1)
10.14.1.2 The Servo-Assisted Hydraulic System
224(1)
10.15 Fly-by-Wire
225(2)
Self-Assessment Exercise 10
227(4)
PART 4 STABILITY
231(58)
11 Static Stability
233(44)
11.1 Static Stability
233(2)
11.2 The Effect of the Variables on Static Stability
235(1)
11.3 Directional Static Stability
235(1)
11.4 Yaw and Sideslip
235(1)
11.5 The Directional Restoring Moment
235(3)
11.5.1 Fin and Rudder Design
237(1)
11.5.2 The Dorsal Fin
237(1)
11.5.3 The Ventral Fin
237(1)
11.5.4 The Moment Arm
237(1)
11.6 Aeroplane Design Features Affecting Directional Static Stability
238(2)
11.6.1 Fuselage
238(1)
11.6.2 Wing
238(1)
11.6.2.1 Dihedral
239(1)
11.6.3 Sweepback
239(1)
11.7 Propeller Slipstream
240(1)
11.8 Neutral Directional Static Stability
240(1)
11.9 Lateral Static Stability
240(2)
11.10 Aeroplane Design Features Affecting Lateral Static Stability
242(1)
11.10.1 Increased Lateral Static Stability
242(1)
11.10.2 Decreased Lateral Static Stability
242(1)
11.11 Sideslip Angle and Rolling Moment Coefficient
243(1)
11.12 Analysis of Design Feature Effects
244(1)
11.13 Wing Contribution
244(2)
11.13.1 Dihedral
244(1)
11.13.2 Anhedral
245(1)
11.13.3 Sweepback
245(1)
11.14 Wing/Fuselage Interference
246(1)
11.14.1 Shielding Effect
246(1)
11.14.2 Wing Location
246(1)
11.15 Fuselage/Fin
246(1)
11.15.1 Fin Size
246(1)
11.15.2 Ventral Fin
246(1)
11.16 Handling Considerations
247(1)
11.16.1 Propeller Slipstream
247(1)
11.16.2 Crosswind Landings
247(1)
11.16.3 Flaps
247(1)
11.17 Longitudinal Static Stability
248(1)
11.18 The Centre of Pressure (CP)
249(1)
11.19 The Neutral Point (NP)
250(1)
11.19.1 Types of Static Neutral Point
250(1)
11.19.1.1 The Stick-Free Static Neutral Point
250(1)
11.19.1.2 The Stick-Fixed Static Neutral Point
250(1)
11.19.2 The Effect of the CG at the NP
250(1)
11.20 The Aerodynamic Centre (AC)
251(1)
11.21 The Centre of Gravity (CG)
251(2)
11.21.1 The CG Envelope
251(1)
11.21.1.1 CG Envelope Limitations
251(1)
11.21.1.2 CG Movement
252(1)
11.21.2 The Effect of CG at the Limits
252(1)
11.21.2.1 CG at the Forward Limit
252(1)
11.21.2.2 CG at the Aft Limit
252(1)
11.22 The Static Margin (SM)
253(1)
11.23 The Trim Point (TP)
253(1)
11.24 Longitudinal Dihedral
253(2)
11.25 Aeroplane-Design Variations
255(1)
11.26 The Effect of the Variables on Longitudinal Static Stability
255(2)
11.26.1 Elevator Deflection
255(1)
11.26.2 Trim
256(1)
11.26.3 The Fuselage
257(1)
11.26.4 Angle of Attack
257(1)
11.26.5 Configuration
257(1)
11.26.5.1 Trailing-Edge Flaps
257(1)
11.26.5.2 Undercarriage
257(1)
11.27 Stick-Fixed Longitudinal Static Stability
257(1)
11.27.1 Stick-Position Stability
258(1)
11.28 Stick-Free Longitudinal Static Stability
258(2)
11.28.1 Stick Force
259(1)
11.29 Certification Standard Stick-Force Requirements
260(1)
11.29.1 a. Class `A' Aeroplanes CS 25.173(c)
260(1)
11.29.2 b. Class `B' Aeroplanes CS 23.173(c)
260(1)
11.30 The Effect of CG Position on Stick Force
260(1)
11.31 Longitudinal Static Manoeuvre Stability
261(1)
11.31.1 The Manoeuvre Point
261(1)
11.32 Factors Affecting Stick Force
262(1)
11.33 Summary
262(2)
11.34 The Effect of Atmospheric Conditions
264(1)
11.34.1 Ice Accretion
264(1)
11.34.2 Heavy Rain
264(1)
11.34.3 Altitude
264(1)
11.35 The Factors Affecting Static Stability
264(3)
Self-Assessment Exercise 11
267(10)
12 Dynamic Stability
277(12)
12.1 Longitudinal Dynamic Stability
279(1)
12.1.1 The Phugoid
279(1)
12.1.2 Short-Period Oscillation
280(1)
12.1.3 Factors Affecting Longitudinal Dynamic Stability
280(1)
12.2 Lateral Dynamic Stability
280(1)
12.2.1 Sideslip
281(1)
12.2.2 Rolling
281(1)
12.2.3 Spiral
281(1)
12.2.4 Dutch Roll
281(1)
12.3 Spiral Instability
281(1)
12.4 Dutch Roll
282(1)
12.5 Asymmetric Thrust
282(1)
12.6 Aerodynamic Damping
283(1)
12.7 Summary
283(1)
12.8 The Factors Affecting Dynamic Stability
283(2)
12.8.1 a. General
283(1)
12.8.2 b. Longitudinal
284(1)
12.8.3 c. Lateral
284(1)
Self-Assessment Exercise 12
285(4)
PART 5 MANOEUVRE AERODYNAMICS
289(60)
13 Level-Flight Manoeuvres
291(24)
13.1 The Manoeuvre Envelope
291(1)
13.1.1 The Flight Load Factor
291(1)
13.2 Manoeuvre-Envelope Limitations
291(3)
13.2.1 The Stalling Speed
291(1)
13.2.2 The `g' Limitation
292(2)
13.2.3 The Manoeuvre-Envelope Limiting Parameters
294(1)
13.2.4 The Manoeuvre-Envelope Maximum-Speed Limitation
294(1)
13.3 Stalling and Design Speed Definitions
294(2)
13.4 Limiting Speeds
296(1)
13.5 The Load Factor
296(1)
13.6 The Gust Load Factor
297(2)
13.7 Buffet
299(1)
13.7.1 Low-Speed Buffet
299(1)
13.7.2 High-Speed Buffet
300(1)
13.8 The Buffet Onset Boundary Chart
300(2)
13.9 Turns
302(4)
13.9.1 The Load Factor in a Turn
303(1)
13.9.2 The Turn Radius
303(2)
13.9.3 Rate of Turn
305(1)
13.10 Turn and Slip Indications
306(1)
Self-Assessment Exercise 13
307(8)
14 Climb and Descent Aerodynamics
315(34)
14.1 Climbing Flight
315(1)
14.2 The Forces in a Climb
315(1)
14.3 The Effect of the Variables on the Climb
316(1)
14.3.1 Altitude
316(1)
14.3.2 Mass
316(1)
14.3.3 Flap Setting
316(1)
14.3.4 Wind Component
317(1)
14.4 Climb Gradient
317(1)
14.5 Climb-Gradient Calculations
318(3)
14.5.1 Method 1
318(2)
14.5.2 Method 2
320(1)
14.6 Rate of Climb
321(1)
14.7 Rate-of-Climb Calculations
321(2)
14.8 Vx and Vy
323(1)
14.9 Vx
323(2)
14.10 Vy
325(1)
14.11 Aircraft Ceiling
326(1)
14.12 Vy at the Absolute Ceiling
327(2)
14.12.1 Piston/Propeller Aeroplanes
328(1)
14.12.2 Jet Aeroplanes
328(1)
14.13 The Effect of the Variables on Vx and Vy
329(2)
14.13.1 Mass
329(1)
14.13.2 Flap
329(1)
14.13.3 Altitude
329(1)
14.13.4 Temperature
329(1)
14.13.5 Wind Component
329(2)
14.14 The Effect of Climbing-Speed Variations
331(1)
14.15 Factors Affecting the Climb
332(1)
14.16 The Glide Descent
332(2)
14.16.1 The Glide Variables
333(1)
14.17 Gliding for Maximum Range
334(1)
14.18 The Effect of the Variables on a Glide Descent
335(3)
14.18.1 Speed
335(1)
14.18.2 Wind Component
336(1)
14.18.3 Mass
337(1)
14.18.4 Angle of Attack
338(1)
14.18.5 Flap
338(1)
14.19 Gliding for Maximum Endurance
338(1)
14.20 Climbing and Descending Turns
339(2)
Self-Assessed Exercise 14
341(8)
PART 6 OTHER AERODYNAMIC CONSIDERATIONS
349(76)
15 High-Speed Flight
351(36)
15.0.1 General Introduction
351(1)
15.1 High-Speed Definitions
352(1)
15.2 High-Speed Calculations
352(1)
15.3 The Shockwave
353(1)
15.3.1 Compressibility
353(1)
15.3.2 Shockwave Formation
353(1)
15.4 Air-Pressure-Wave Patterns
354(3)
15.4.1 Subsonic
357(1)
15.4.2 Sonic
357(1)
15.4.3 Supersonic
357(1)
15.5 The Shockwave Deflection Angle
357(1)
15.6 The High-Speed CP
358(1)
15.7 Critical Mach Number (MCRIT)
358(1)
15.8 The Effect of a Shockwave
359(1)
15.8.1 Wave Drag
359(1)
15.8.2 Drag Divergence Mach Number
360(1)
15.9 The Flying Controls
360(1)
15.10 The Effect of the Aerofoil Profile
361(1)
15.10.1 Thickness/Chord Ratio
362(1)
15.10.2 Wing Camber
362(1)
15.11 Swept Wings
362(1)
15.12 The Effect of Sweepback
362(2)
15.12.1 The Advantages of Sweepback
362(1)
15.12.1.1 Increased MCRIT
363(1)
15.12.1.2 Aerodynamic Effects
363(1)
15.12.2 The Disadvantages of Sweepback
363(1)
15.13 Remedial Design Features
364(1)
15.13.1 Low-Speed Ailerons
365(1)
15.13.2 High-Speed Ailerons
365(1)
15.14 Area Rule
365(2)
15.15 High-Speed-Flight Characteristics
367(1)
15.15.1 High-Speed Buffet
367(1)
15.15.2 Tuck Under
367(1)
15.15.3 The Shock Stall
367(1)
15.15.4 The Buffet Boundary
368(1)
15.15.5 Coffin Corner
368(1)
15.16 Speed Instability
368(1)
15.16.1 The Mach Trimmer
369(1)
15.16.2 Lateral Instability
369(1)
15.17 The Supercritical Wing
369(1)
15.18 Supersonic Airflow
370(3)
15.18.1 The Convex Corner Mach Wave (Expansion Wave)
370(2)
15.18.2 The Concave-Corner Shockwave
372(1)
Self-Assessment Exercise 15
373(14)
16 Propellers
387(24)
16.1 Propeller Definitions
387(2)
16.2 Basic Principles
389(2)
16.3 Factors Affecting Propeller Efficiency
391(1)
16.4 Airspeed
391(2)
16.4.1 Fixed-Pitch Propellers
391(2)
16.4.2 Variable-Pitch Propellers
393(1)
16.5 Power Absorption
393(2)
16.5.1 Propeller-Blade Shape
393(1)
16.5.1.1 Blade Length
393(1)
16.5.1.2 Blade Chord
394(1)
16.5.2 Propeller-Blade Number
394(1)
16.5.3 Solidity
394(1)
16.6 The Effects of a Propeller on Aeroplane Performance
395(3)
16.6.1 Torque
395(1)
16.6.2 Slipstream Effect
396(1)
16.6.3 Asymmetric Blade
396(1)
16.6.4 Gyroscopic Effect
397(1)
16.7 Propeller Forces and Moments
398(2)
16.7.1 Centrifugal Force (CF)
398(1)
16.7.2 Centrifugal Twisting Moment (CTM)
398(1)
16.7.3 Aerodynamic Twisting Moment (ATM)
398(2)
16.8 Propeller-Blade Positions
400(1)
16.9 The Constant-Speed Unit (CSU)
400(3)
16.9.1 Propeller Windmilling
401(1)
16.9.2 Propeller Feathering
401(2)
16.9.3 Reverse Pitch
403(1)
16.10 The Effect of a Constant Speed Propeller On a Glide Descent
403(1)
16.11 Engine Failure
403(2)
Self-Assessment Exercise 16
405(6)
17 Operational Considerations
411(14)
17.1 Runway-Surface Contamination
411(2)
17.1.1 Surface Contaminants
411(1)
17.1.1.1 Standing Water
411(1)
17.1.1.2 Slush
411(1)
17.1.1.3 Wet Snow
411(1)
17.1.1.4 Dry Snow
412(1)
17.1.1.5 Very Dry Snow
412(1)
17.1.1.6 Compacted Snow
412(1)
17.1.1.7 Ice
412(1)
17.1.1.8 Specially Prepared Winter Runway
412(1)
17.1.1.9 Mixtures
412(1)
17.1.1.10 Contaminant Drag
413(1)
17.1.1.11 Water-Equivalent Depth
413(1)
17.2 The Effect of Runway Contamination
413(2)
17.2.1 Take-off
413(2)
17.3 Aeroplane Contamination
415(2)
17.3.1 The Effect of Heavy Rain
415(1)
17.3.2 The Effect of Propeller Icing
415(1)
17.3.3 The Effect of Airframe Icing
416(1)
17.3.4 The Effect of Airframe-Surface Damage
416(1)
17.3.5 The Effect of Turbulence
416(1)
17.4 Windshear
417(4)
17.4.1 The Effect of Windshear
417(1)
17.4.1.1 Energy Loss
417(1)
17.4.1.2 Energy Gain
417(1)
17.4.2 Downdraught
418(1)
17.4.2.1 Take-off
418(1)
17.4.2.2 Landing
419(1)
17.4.3 Countering Windshear
419(2)
Self-Assessment Exercise 17
421(4)
PART 7 CONCLUSION
425(36)
18 Summary
427(20)
18.1 Aerofoil-Profile Definitions
427(1)
18.2 Aerofoil-Attitude Definitions
427(1)
18.3 Wing-Shape Definitions
428(1)
18.4 High-Speed Definitions
428(1)
18.5 Propeller Definitions
429(1)
18.6 V Speeds
430(2)
18.7 PoF Formulae
432(3)
18.7.1 Drag
433(1)
18.7.2 Wing Loading/Load Factor
433(1)
18.7.3 Stalling Speed Calculations
434(1)
18.7.3.1 Mass Change
434(1)
18.7.3.2 Load Factor
434(1)
18.7.3.3 Turn
434(1)
18.7.4 Design Manoeuvre Speed (VA)
434(1)
18.7.5 Turn Details
434(1)
18.7.5.1 Radius of Turn
434(1)
18.7.5.2 Rate of Turn
434(1)
18.7.6 Climb Calculations
434(1)
18.7.7 Descent Calculations
434(1)
18.7.7.1 Maximum Glide Range
435(1)
18.7.8 Mach Angle (μ) Calculation
435(1)
18.8 Key Facts
435(1)
18.9 Stalling
435(1)
18.9.1 The Maximum Coefficient of Lift (CLmax)
435(1)
18.9.2 The Critical Angle
435(1)
18.9.3 The Stalling Speed
436(1)
18.10 Stability
436(3)
18.10.1 Static Stability
436(1)
18.10.2 Dynamic Stability
436(2)
18.10.3 The Stick Force
438(1)
18.10.4 The Gust Load Factor
439(1)
18.11 Propellers
439(1)
18.11.1 Propeller Efficiency
439(1)
18.11.2 Fixed Pitch Angle of Attack
439(1)
18.11.3 Propeller Gyroscopic Effect
440(1)
18.12 The Effect of the Variables on Performance
440(5)
18.12.1 Airframe Surface
440(1)
18.12.2 Airframe Surface
440(1)
18.12.3 Altitude
441(1)
18.12.4 Aspect Ratio
441(1)
18.12.5 Camber
441(1)
18.12.6 CG Position
442(1)
18.12.7 Flap
442(1)
18.12.8 Sweepback
443(1)
18.12.9 Dihedral
443(1)
18.12.10 Mass
443(2)
Self-Assessment Exercise 18
445(2)
19 Solutions (with page references)
447(14)
Self-Assessment Exercise 1
447(1)
Self-Assessment Exercise 2
447(1)
Self-Assessment Exercise 3
448(1)
Self-Assessment Exercise 4
448(1)
Self-Assessment Exercise 5
448(1)
Self-Assessment Exercise 6
449(1)
Self-Assessment Exercise 7
450(1)
Self-Assessment Exercise 8
451(1)
Self-Assessment Exercise 9
452(1)
Self-Assessment Exercise 10
453(1)
Self-Assessment Exercise 11
453(1)
Self-Assessment Exercise 12
454(1)
Self-Assessment Exercise 13
454(2)
Self-Assessment Exercise 14
456(2)
14.0.1 VX & VY Mathematical Proof
457(1)
Self-Assessment Exercise 15
458(1)
Self-Assessment Exercise 16
459(1)
Self-Assessment Exercise 17
459(1)
Self-Assessment Exercise 18 Turn Calculations
460(1)
Index 461
Peter Swatton is Director and Chief Ground Instructor at Ground Training Services at Bournemouth/Hurn airport which specialises in training pilots for the JAA examinations. He was a navigator in the Royal Air Force for 37 years, of which 28 were spent as an OCU instructor and Wing examiner: on retirement he became an instructor with the Professional Pilot Study Centre at Bournemouth and remained there for 12 years before assuming his current role.