Muutke küpsiste eelistusi

E-raamat: Principles of Free Electron Lasers

  • Formaat: EPUB+DRM
  • Ilmumisaeg: 25-Apr-2018
  • Kirjastus: Springer International Publishing AG
  • Keel: eng
  • ISBN-13: 9783319751061
  • Formaat - EPUB+DRM
  • Hind: 184,63 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: EPUB+DRM
  • Ilmumisaeg: 25-Apr-2018
  • Kirjastus: Springer International Publishing AG
  • Keel: eng
  • ISBN-13: 9783319751061

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book presents a comprehensive description of the physics of free-electron lasers starting from the fundamentals and proceeding through detailed derivations of the equations describing electron trajectories, and spontaneous and stimulated emission. Linear and nonlinear analyses are described, as are detailed explanations of the nonlinear simulation of a variety of configurations including amplifiers, oscillators, self-amplified spontaneous emission, high-gain harmonic generation, and optical klystrons. Theory and simulation are anchored using comprehensive comparisons with a wide variety of experiments.

1 Introduction 1(40)
1.1 Principles of Operation
3(12)
1.2 Quantum Mechanical Effects
15(2)
1.3 Experiments and Applications
17(13)
1.4 Discussion
30(1)
References
31(10)
2 The Wiggler Field and Electron Dynamics 41(38)
2.1 Helical Wiggler Configurations
43(20)
2.1.1 Idealized One-Dimensional Trajectories
43(2)
2.1.2 Steady-State Trajectories
45(1)
2.1.3 Stability of the Steady-State Trajectories
45(2)
2.1.4 Negative-Mass Trajectories
47(1)
2.1.5 General Integration of the Orbit Equations
48(5)
2.1.6 Trajectories in a Realizable Helical Wiggler
53(1)
2.1.7 Steady-State Trajectories
54(1)
2.1.8 Stability of the Steady-State Trajectories
54(3)
2.1.9 Negative-Mass Trajectories
57(1)
2.1.10 Generalized Trajectories: Larmor and Betatron Oscillations
57(6)
2.2 Planar Wiggler Configurations
63(11)
2.2.1 Idealized One-Dimensional Trajectories
63(1)
2.2.2 Quasi-Steady-State Trajectories
64(2)
2.2.3 Negative-Mass Trajectories
66(1)
2.2.4 Trajectories in Realizable Planar Wigglers
67(2)
2.2.5 Gradient Drifts Due to an Axial Magnetic Field
69(1)
2.2.6 Betatron Oscillations
70(2)
2.2.7 The Effect of Parabolic Pole Faces
72(2)
2.3 Tapered Wiggler Configurations
74(3)
2.3.1 The Idealized One-Dimensional Limit
74(2)
2.3.2 The Realizable Three-Dimensional Formulation
76(1)
2.3.3 Planar Wiggler Geometries
76(1)
References
77(2)
3 Incoherent Undulator Radiation 79(12)
3.1 Test Particle Formulation
79(5)
3.2 The Cold Beam Regime
84(3)
3.3 The Temperature-Dominated Regime
87(3)
References
90(1)
4 Coherent Emission: Linear Theory 91(96)
4.1 Phase Space Dynamics and the Pendulum Equation
92(4)
4.2 Linear Stability in the Idealized Limit
96(48)
4.2.1 Helical Wiggler Configurations
98(26)
4.2.2 Planar Wiggler Configurations
124(20)
4.3 Linear Stability in Three Dimensions
144(40)
4.3.1 Waveguide Mode Analysis
145(22)
4.3.2 Optical Mode Analysis
167(17)
References
184(3)
5 Nonlinear Theory: Guided-Mode Analysis 187(130)
5.1 The Phase Trapping Efficiency
188(4)
5.2 One-Dimensional Analysis: Helical Wigglers
192(23)
5.2.1 The Dynamical Equations
193(9)
5.2.2 Electron Beam Injection
202(3)
5.2.3 Numerical Solution of the Dynamical Equations
205(6)
5.2.4 The Phase Space Evolution of the Electron Beam
211(3)
5.2.5 Comparison with Experiment
214(1)
5.3 One-Dimensional Analysis: Planar Wigglers
215(4)
5.3.1 The Dynamical Equations
215(3)
5.3.2 Numerical Solutions of the Dynamical Equations
218(1)
5.4 Three-Dimensional Analysis: Helical Wigglers
219(34)
5.4.1 The General Formulation
220(14)
5.4.2 Numerical Simulation for Group I Orbit Parameters
234(9)
5.4.3 Numerical Simulation for Group H Orbit Parameters
243(4)
5.4.4 Numerical Simulation for the Case of a Tapered Wiggler
247(3)
5.4.5 Comparison with Experiment: A Submillimeter Free-Electron Laser
250(3)
5.5 Three-Dimensional Analysis: Planar Wigglers
253(27)
5.5.1 The General Configuration
254(5)
5.5.2 The Initial Conditions
259(1)
5.5.3 Numerical Simulation: Single-Mode Limit
260(13)
5.5.4 Numerical Simulation: Multiple Modes
273(4)
5.5.5 Comparison with the ELF Experiment at LLNL
277(3)
5.6 The Inclusion of Space-Charge Waves in Three Dimensions
280(24)
5.6.1 The Raman Criterion
280(1)
5.6.2 The Field Equations
281(3)
5.6.3 The Electron Orbit Equations
284(1)
5.6.4 Numerical Examples
285(3)
5.6.5 Comparison with Experiments
288(16)
5.7 DC Self-Field Effects in Free-Electron Lasers
304(8)
5.7.1 The Self-Fields
304(4)
5.7.2 The Nonlinear Formulation
308(1)
5.7.3 The Numerical Analysis
308(1)
5.7.4 Comparison with Experiment
309(3)
References
312(5)
6 Nonlinear Theory: Optical Mode Analysis 317(62)
6.1 Optical Guiding
318(10)
6.1.1 Optical Guiding and the Relative Phase
319(3)
6.1.2 The Separable Beam Limit
322(6)
6.2 Slippage and the Group Velocity
328(2)
6.3 The SVEA, Time Dependence, and the Quasi-static Assumption
330(2)
6.4 The Simulation of Shot Noise
332(3)
6.5 Elliptical Wigglers and the JJ-Factor
335(4)
6.5.1 The APPLE-II Wiggler Representation
335(1)
6.5.2 The Resonance Condition and the JJ-Factor
336(2)
6.5.3 The Generalized Pierce Parameter and Ming Xie Parameterization
338(1)
6.6 Quadrupole and Dipole Field Models
339(1)
6.7 The One-Dimensional Formulation
339(12)
6.7.1 The Optical Field Representation
340(2)
6.7.2 The Dynamical Equations
342(2)
6.7.3 The Numerical Procedure
344(2)
6.7.4 Numerical Simulation of a Seeded Amplifier with a Planar Wiggler
346(3)
6.7.5 Numerical Simulation of a Seeded Amplifier with a Helical Wiggler
349(1)
6.7.6 Three-Dimensional Extension of the Formulation
349(2)
6.8 The Three-Dimensional Formulation
351(24)
6.8.1 The Dynamical Equations for the Gauss-Hermite Modes
351(8)
6.8.2 The Dynamical Equations for the Gauss-Laguerre Modes
359(5)
6.8.3 The Numerical Procedure
364(1)
6.8.4 Comparison with an Energy-Detuned Amplifier Experiment
365(4)
6.8.5 Comparison with a Tapered Wiggler Amplifier Experiment
369(2)
6.8.6 Simulation of an Elliptic Wiggler/Quadrupole Lattice
371(4)
References
375(4)
7 Sideband Instabilities 379(12)
7.1 The General Formulation
380(4)
7.2 Trapped Electron Trajectories
384(2)
7.3 The Small-Signal Gain
386(3)
References
389(2)
8 Coherent Harmonic Radiation 391(34)
8.1 Linear Harmonic Generation
392(22)
8.1.1 Helical Wiggler Configurations
393(2)
8.1.2 Planar Wiggler Configurations
395(14)
8.1.3 The Periodic Position Interaction
409(5)
8.2 Nonlinear Harmonic Generation
414(8)
8.2.1 The Basis for Nonlinear Harmonic Generation
415(2)
8.2.2 Planar Wiggler Configurations
417(5)
References
422(3)
9 Oscillator Configurations 425(102)
9.1 General Formulation
426(8)
9.2 Planar Wiggler Equations
434(2)
9.3 Characteristics: Slippage
436(6)
9.4 Oscillator Gain
442(2)
9.5 The Low-Gain Regime
444(5)
9.6 Long-Pulse Oscillators
449(49)
9.6.1 Single-Frequency States
451(9)
9.6.2 Stability of Single-Frequency States
460(14)
9.6.3 The Effects of Shot Noise
474(12)
9.6.4 Linear and Nonlinear Spectral Narrowing
486(12)
9.7 Repetitively Pulsed Oscillators
498(11)
9.7.1 Cavity Detuning
498(3)
9.7.2 Supermodes
501(6)
9.7.3 Spiking Mode and Cavity Detuning
507(2)
9.8 Multidimensional Effects
509(4)
9.9 Storage Ring Free-Electron Lasers
513(7)
9.10 Optical Klystrons
520(3)
References
523(4)
10 Oscillator Simulation 527(28)
10.1 The General Simulation Procedure
528(1)
10.2 The Optics Propagation Code (OPC)
529(1)
10.3 Cavity Detuning
530(1)
10.4 The Stability of Concentric Resonators
531(1)
10.5 Low-Gain/High-Q Oscillators
532(6)
10.5.1 The Efficiency in the Low-Gain Regime
532(1)
10.5.2 The JLab 10-kW Upgrade Experiment
533(5)
10.6 High-Gain/Low-Q Oscillators
538(16)
10.6.1 The Single-Pass Gain
540(2)
10.6.2 Comparison with a SASE Free-Electron Laser
542(1)
10.6.3 Cavity Detuning
543(1)
10.6.4 The Temporal Evolution of the Pulse: Limit-Cycle Oscillations
544(2)
10.6.5 The Transverse Mode Structure
546(4)
10.6.6 Temporal Coherence
550(4)
References
554(1)
11 Wiggler Imperfections 555(12)
11.1 The Wiggler Model
556(1)
11.2 The Long-Wavelength Regime
557(5)
11.3 The Short-Wavelength Regime
562(2)
11.4 Summary
564(1)
References
565(2)
12 X-Ray Free-Electron Lasers and Self-Amplified Spontaneous Emission (SASE) 567(48)
12.1 The Ming Xie Parameterization and the Equivalent Noise Power
568(2)
12.2 Electron Bunch Compression
570(1)
12.3 SASE and MOPA Comparison
571(10)
12.3.1 The Case of a Uniform Wiggler
571(4)
12.3.2 The Case of a Tapered Wiggler
575(6)
12.3.3 Summary
581(1)
12.4 Slippage and Phase Matching Between Wigglers
581(9)
12.4.1 The Phase Match in a Uniform Wiggler Line
582(6)
12.4.2 Optimizing the Phase Match in a Tapered Wiggler Line
588(1)
12.4.3 Phase Shifters
588(2)
12.5 Comparison Between Simulation and Experiments
590(7)
12.5.1 The Linac Coherent Light Source (LCLS)
590(3)
12.5.2 The SPARC Experiment
593(4)
12.6 Enhanced Harmonic Radiation
597(7)
12.7 Resistive Wall Wakefields
604(7)
12.7.1 The Wakefields in a Cylindrical Beam Pipe
604(3)
12.7.2 The Wakefields in a Rectangular Beam Pipe
607(3)
12.7.3 The Energy Variation Within the Bunch
610(1)
12.7.4 An Example: The LCLS
610(1)
References
611(4)
13 Optical Klystrons and High-Gain Harmonic Generation 615(20)
13.1 The Physical Concept
615(2)
13.2 Comparison Between an Optical Klystron and a Conventional Wiggler
617(4)
13.3 The Multistage Optical Klystron
621(4)
13.4 High-Gain Harmonic Generation
625(8)
13.4.1 Second Harmonic Generation
625(2)
13.4.2 A Harmonic Cascade
627(6)
References
633(2)
14 Electromagnetic-Wave Wigglers 635(16)
14.1 Single-Particle Trajectories
637(4)
14.2 The Small-Signal Gain
641(6)
14.3 Efficiency Enhancement
647(2)
References
649(2)
15 Chaos in Free-Electron Lasers 651(22)
15.1 Chaos in Single-Particle Orbits
653(8)
15.1.1 The Equilibrium Configuration
654(1)
15.1.2 The Orbit Equations
655(1)
15.1.3 The Canonical Transformation
656(1)
15.1.4 Integrable Trajectories
657(2)
15.1.5 Chaotic Trajectories
659(2)
15.2 Chaos in Free-Electron Laser Oscillators
661(10)
15.2.1 Return Maps
662(2)
15.2.2 Electron Slippage
664(4)
15.2.3 Pulsed Injection
668(1)
15.2.4 Chaos in Storage Rings
669(2)
References
671(2)
Appendix: Electron Beam Optics 673(26)
Index 699
Henry Freund is a Research Professor in the ECE Department at the University of New Mexico and the University of Maryland.

Thomas M. Antonsen, Jr. is a Professor of Electrical and Computer Engineering at the University of Maryland.