1 Introduction |
|
1 | (40) |
|
1.1 Principles of Operation |
|
|
3 | (12) |
|
1.2 Quantum Mechanical Effects |
|
|
15 | (2) |
|
1.3 Experiments and Applications |
|
|
17 | (13) |
|
|
30 | (1) |
|
|
31 | (10) |
2 The Wiggler Field and Electron Dynamics |
|
41 | (38) |
|
2.1 Helical Wiggler Configurations |
|
|
43 | (20) |
|
2.1.1 Idealized One-Dimensional Trajectories |
|
|
43 | (2) |
|
2.1.2 Steady-State Trajectories |
|
|
45 | (1) |
|
2.1.3 Stability of the Steady-State Trajectories |
|
|
45 | (2) |
|
2.1.4 Negative-Mass Trajectories |
|
|
47 | (1) |
|
2.1.5 General Integration of the Orbit Equations |
|
|
48 | (5) |
|
2.1.6 Trajectories in a Realizable Helical Wiggler |
|
|
53 | (1) |
|
2.1.7 Steady-State Trajectories |
|
|
54 | (1) |
|
2.1.8 Stability of the Steady-State Trajectories |
|
|
54 | (3) |
|
2.1.9 Negative-Mass Trajectories |
|
|
57 | (1) |
|
2.1.10 Generalized Trajectories: Larmor and Betatron Oscillations |
|
|
57 | (6) |
|
2.2 Planar Wiggler Configurations |
|
|
63 | (11) |
|
2.2.1 Idealized One-Dimensional Trajectories |
|
|
63 | (1) |
|
2.2.2 Quasi-Steady-State Trajectories |
|
|
64 | (2) |
|
2.2.3 Negative-Mass Trajectories |
|
|
66 | (1) |
|
2.2.4 Trajectories in Realizable Planar Wigglers |
|
|
67 | (2) |
|
2.2.5 Gradient Drifts Due to an Axial Magnetic Field |
|
|
69 | (1) |
|
2.2.6 Betatron Oscillations |
|
|
70 | (2) |
|
2.2.7 The Effect of Parabolic Pole Faces |
|
|
72 | (2) |
|
2.3 Tapered Wiggler Configurations |
|
|
74 | (3) |
|
2.3.1 The Idealized One-Dimensional Limit |
|
|
74 | (2) |
|
2.3.2 The Realizable Three-Dimensional Formulation |
|
|
76 | (1) |
|
2.3.3 Planar Wiggler Geometries |
|
|
76 | (1) |
|
|
77 | (2) |
3 Incoherent Undulator Radiation |
|
79 | (12) |
|
3.1 Test Particle Formulation |
|
|
79 | (5) |
|
|
84 | (3) |
|
3.3 The Temperature-Dominated Regime |
|
|
87 | (3) |
|
|
90 | (1) |
4 Coherent Emission: Linear Theory |
|
91 | (96) |
|
4.1 Phase Space Dynamics and the Pendulum Equation |
|
|
92 | (4) |
|
4.2 Linear Stability in the Idealized Limit |
|
|
96 | (48) |
|
4.2.1 Helical Wiggler Configurations |
|
|
98 | (26) |
|
4.2.2 Planar Wiggler Configurations |
|
|
124 | (20) |
|
4.3 Linear Stability in Three Dimensions |
|
|
144 | (40) |
|
4.3.1 Waveguide Mode Analysis |
|
|
145 | (22) |
|
4.3.2 Optical Mode Analysis |
|
|
167 | (17) |
|
|
184 | (3) |
5 Nonlinear Theory: Guided-Mode Analysis |
|
187 | (130) |
|
5.1 The Phase Trapping Efficiency |
|
|
188 | (4) |
|
5.2 One-Dimensional Analysis: Helical Wigglers |
|
|
192 | (23) |
|
5.2.1 The Dynamical Equations |
|
|
193 | (9) |
|
5.2.2 Electron Beam Injection |
|
|
202 | (3) |
|
5.2.3 Numerical Solution of the Dynamical Equations |
|
|
205 | (6) |
|
5.2.4 The Phase Space Evolution of the Electron Beam |
|
|
211 | (3) |
|
5.2.5 Comparison with Experiment |
|
|
214 | (1) |
|
5.3 One-Dimensional Analysis: Planar Wigglers |
|
|
215 | (4) |
|
5.3.1 The Dynamical Equations |
|
|
215 | (3) |
|
5.3.2 Numerical Solutions of the Dynamical Equations |
|
|
218 | (1) |
|
5.4 Three-Dimensional Analysis: Helical Wigglers |
|
|
219 | (34) |
|
5.4.1 The General Formulation |
|
|
220 | (14) |
|
5.4.2 Numerical Simulation for Group I Orbit Parameters |
|
|
234 | (9) |
|
5.4.3 Numerical Simulation for Group H Orbit Parameters |
|
|
243 | (4) |
|
5.4.4 Numerical Simulation for the Case of a Tapered Wiggler |
|
|
247 | (3) |
|
5.4.5 Comparison with Experiment: A Submillimeter Free-Electron Laser |
|
|
250 | (3) |
|
5.5 Three-Dimensional Analysis: Planar Wigglers |
|
|
253 | (27) |
|
5.5.1 The General Configuration |
|
|
254 | (5) |
|
5.5.2 The Initial Conditions |
|
|
259 | (1) |
|
5.5.3 Numerical Simulation: Single-Mode Limit |
|
|
260 | (13) |
|
5.5.4 Numerical Simulation: Multiple Modes |
|
|
273 | (4) |
|
5.5.5 Comparison with the ELF Experiment at LLNL |
|
|
277 | (3) |
|
5.6 The Inclusion of Space-Charge Waves in Three Dimensions |
|
|
280 | (24) |
|
5.6.1 The Raman Criterion |
|
|
280 | (1) |
|
5.6.2 The Field Equations |
|
|
281 | (3) |
|
5.6.3 The Electron Orbit Equations |
|
|
284 | (1) |
|
|
285 | (3) |
|
5.6.5 Comparison with Experiments |
|
|
288 | (16) |
|
5.7 DC Self-Field Effects in Free-Electron Lasers |
|
|
304 | (8) |
|
|
304 | (4) |
|
5.7.2 The Nonlinear Formulation |
|
|
308 | (1) |
|
5.7.3 The Numerical Analysis |
|
|
308 | (1) |
|
5.7.4 Comparison with Experiment |
|
|
309 | (3) |
|
|
312 | (5) |
6 Nonlinear Theory: Optical Mode Analysis |
|
317 | (62) |
|
|
318 | (10) |
|
6.1.1 Optical Guiding and the Relative Phase |
|
|
319 | (3) |
|
6.1.2 The Separable Beam Limit |
|
|
322 | (6) |
|
6.2 Slippage and the Group Velocity |
|
|
328 | (2) |
|
6.3 The SVEA, Time Dependence, and the Quasi-static Assumption |
|
|
330 | (2) |
|
6.4 The Simulation of Shot Noise |
|
|
332 | (3) |
|
6.5 Elliptical Wigglers and the JJ-Factor |
|
|
335 | (4) |
|
6.5.1 The APPLE-II Wiggler Representation |
|
|
335 | (1) |
|
6.5.2 The Resonance Condition and the JJ-Factor |
|
|
336 | (2) |
|
6.5.3 The Generalized Pierce Parameter and Ming Xie Parameterization |
|
|
338 | (1) |
|
6.6 Quadrupole and Dipole Field Models |
|
|
339 | (1) |
|
6.7 The One-Dimensional Formulation |
|
|
339 | (12) |
|
6.7.1 The Optical Field Representation |
|
|
340 | (2) |
|
6.7.2 The Dynamical Equations |
|
|
342 | (2) |
|
6.7.3 The Numerical Procedure |
|
|
344 | (2) |
|
6.7.4 Numerical Simulation of a Seeded Amplifier with a Planar Wiggler |
|
|
346 | (3) |
|
6.7.5 Numerical Simulation of a Seeded Amplifier with a Helical Wiggler |
|
|
349 | (1) |
|
6.7.6 Three-Dimensional Extension of the Formulation |
|
|
349 | (2) |
|
6.8 The Three-Dimensional Formulation |
|
|
351 | (24) |
|
6.8.1 The Dynamical Equations for the Gauss-Hermite Modes |
|
|
351 | (8) |
|
6.8.2 The Dynamical Equations for the Gauss-Laguerre Modes |
|
|
359 | (5) |
|
6.8.3 The Numerical Procedure |
|
|
364 | (1) |
|
6.8.4 Comparison with an Energy-Detuned Amplifier Experiment |
|
|
365 | (4) |
|
6.8.5 Comparison with a Tapered Wiggler Amplifier Experiment |
|
|
369 | (2) |
|
6.8.6 Simulation of an Elliptic Wiggler/Quadrupole Lattice |
|
|
371 | (4) |
|
|
375 | (4) |
7 Sideband Instabilities |
|
379 | (12) |
|
7.1 The General Formulation |
|
|
380 | (4) |
|
7.2 Trapped Electron Trajectories |
|
|
384 | (2) |
|
7.3 The Small-Signal Gain |
|
|
386 | (3) |
|
|
389 | (2) |
8 Coherent Harmonic Radiation |
|
391 | (34) |
|
8.1 Linear Harmonic Generation |
|
|
392 | (22) |
|
8.1.1 Helical Wiggler Configurations |
|
|
393 | (2) |
|
8.1.2 Planar Wiggler Configurations |
|
|
395 | (14) |
|
8.1.3 The Periodic Position Interaction |
|
|
409 | (5) |
|
8.2 Nonlinear Harmonic Generation |
|
|
414 | (8) |
|
8.2.1 The Basis for Nonlinear Harmonic Generation |
|
|
415 | (2) |
|
8.2.2 Planar Wiggler Configurations |
|
|
417 | (5) |
|
|
422 | (3) |
9 Oscillator Configurations |
|
425 | (102) |
|
|
426 | (8) |
|
9.2 Planar Wiggler Equations |
|
|
434 | (2) |
|
9.3 Characteristics: Slippage |
|
|
436 | (6) |
|
|
442 | (2) |
|
|
444 | (5) |
|
9.6 Long-Pulse Oscillators |
|
|
449 | (49) |
|
9.6.1 Single-Frequency States |
|
|
451 | (9) |
|
9.6.2 Stability of Single-Frequency States |
|
|
460 | (14) |
|
9.6.3 The Effects of Shot Noise |
|
|
474 | (12) |
|
9.6.4 Linear and Nonlinear Spectral Narrowing |
|
|
486 | (12) |
|
9.7 Repetitively Pulsed Oscillators |
|
|
498 | (11) |
|
|
498 | (3) |
|
|
501 | (6) |
|
9.7.3 Spiking Mode and Cavity Detuning |
|
|
507 | (2) |
|
9.8 Multidimensional Effects |
|
|
509 | (4) |
|
9.9 Storage Ring Free-Electron Lasers |
|
|
513 | (7) |
|
|
520 | (3) |
|
|
523 | (4) |
10 Oscillator Simulation |
|
527 | (28) |
|
10.1 The General Simulation Procedure |
|
|
528 | (1) |
|
10.2 The Optics Propagation Code (OPC) |
|
|
529 | (1) |
|
|
530 | (1) |
|
10.4 The Stability of Concentric Resonators |
|
|
531 | (1) |
|
10.5 Low-Gain/High-Q Oscillators |
|
|
532 | (6) |
|
10.5.1 The Efficiency in the Low-Gain Regime |
|
|
532 | (1) |
|
10.5.2 The JLab 10-kW Upgrade Experiment |
|
|
533 | (5) |
|
10.6 High-Gain/Low-Q Oscillators |
|
|
538 | (16) |
|
10.6.1 The Single-Pass Gain |
|
|
540 | (2) |
|
10.6.2 Comparison with a SASE Free-Electron Laser |
|
|
542 | (1) |
|
|
543 | (1) |
|
10.6.4 The Temporal Evolution of the Pulse: Limit-Cycle Oscillations |
|
|
544 | (2) |
|
10.6.5 The Transverse Mode Structure |
|
|
546 | (4) |
|
10.6.6 Temporal Coherence |
|
|
550 | (4) |
|
|
554 | (1) |
11 Wiggler Imperfections |
|
555 | (12) |
|
|
556 | (1) |
|
11.2 The Long-Wavelength Regime |
|
|
557 | (5) |
|
11.3 The Short-Wavelength Regime |
|
|
562 | (2) |
|
|
564 | (1) |
|
|
565 | (2) |
12 X-Ray Free-Electron Lasers and Self-Amplified Spontaneous Emission (SASE) |
|
567 | (48) |
|
12.1 The Ming Xie Parameterization and the Equivalent Noise Power |
|
|
568 | (2) |
|
12.2 Electron Bunch Compression |
|
|
570 | (1) |
|
12.3 SASE and MOPA Comparison |
|
|
571 | (10) |
|
12.3.1 The Case of a Uniform Wiggler |
|
|
571 | (4) |
|
12.3.2 The Case of a Tapered Wiggler |
|
|
575 | (6) |
|
|
581 | (1) |
|
12.4 Slippage and Phase Matching Between Wigglers |
|
|
581 | (9) |
|
12.4.1 The Phase Match in a Uniform Wiggler Line |
|
|
582 | (6) |
|
12.4.2 Optimizing the Phase Match in a Tapered Wiggler Line |
|
|
588 | (1) |
|
|
588 | (2) |
|
12.5 Comparison Between Simulation and Experiments |
|
|
590 | (7) |
|
12.5.1 The Linac Coherent Light Source (LCLS) |
|
|
590 | (3) |
|
12.5.2 The SPARC Experiment |
|
|
593 | (4) |
|
12.6 Enhanced Harmonic Radiation |
|
|
597 | (7) |
|
12.7 Resistive Wall Wakefields |
|
|
604 | (7) |
|
12.7.1 The Wakefields in a Cylindrical Beam Pipe |
|
|
604 | (3) |
|
12.7.2 The Wakefields in a Rectangular Beam Pipe |
|
|
607 | (3) |
|
12.7.3 The Energy Variation Within the Bunch |
|
|
610 | (1) |
|
12.7.4 An Example: The LCLS |
|
|
610 | (1) |
|
|
611 | (4) |
13 Optical Klystrons and High-Gain Harmonic Generation |
|
615 | (20) |
|
13.1 The Physical Concept |
|
|
615 | (2) |
|
13.2 Comparison Between an Optical Klystron and a Conventional Wiggler |
|
|
617 | (4) |
|
13.3 The Multistage Optical Klystron |
|
|
621 | (4) |
|
13.4 High-Gain Harmonic Generation |
|
|
625 | (8) |
|
13.4.1 Second Harmonic Generation |
|
|
625 | (2) |
|
13.4.2 A Harmonic Cascade |
|
|
627 | (6) |
|
|
633 | (2) |
14 Electromagnetic-Wave Wigglers |
|
635 | (16) |
|
14.1 Single-Particle Trajectories |
|
|
637 | (4) |
|
14.2 The Small-Signal Gain |
|
|
641 | (6) |
|
14.3 Efficiency Enhancement |
|
|
647 | (2) |
|
|
649 | (2) |
15 Chaos in Free-Electron Lasers |
|
651 | (22) |
|
15.1 Chaos in Single-Particle Orbits |
|
|
653 | (8) |
|
15.1.1 The Equilibrium Configuration |
|
|
654 | (1) |
|
15.1.2 The Orbit Equations |
|
|
655 | (1) |
|
15.1.3 The Canonical Transformation |
|
|
656 | (1) |
|
15.1.4 Integrable Trajectories |
|
|
657 | (2) |
|
15.1.5 Chaotic Trajectories |
|
|
659 | (2) |
|
15.2 Chaos in Free-Electron Laser Oscillators |
|
|
661 | (10) |
|
|
662 | (2) |
|
|
664 | (4) |
|
|
668 | (1) |
|
15.2.4 Chaos in Storage Rings |
|
|
669 | (2) |
|
|
671 | (2) |
Appendix: Electron Beam Optics |
|
673 | (26) |
Index |
|
699 | |