Muutke küpsiste eelistusi

E-raamat: Principles of Semiconductor Devices: International Second Edition

(, Professor, School of Microelectronic Engineering at Griffith, Australia)
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 140,99 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

For the international second edition, the author builds upon and expands on hallmark features of the book established in the first edition, adding sections on new technology and increasing the number of end-of-chapter problems by 30%. Updated material relating to the environmental applications of technology was added , as well as a new chapter on nanoscale devices. Chapters on MOS capacitor and generation and recombination were also revised and updated.

The book is divided into 4 parts: Part I on Semiconductor Physics; Part II on the principles of operation and modeling of the fundamental junctions and transistors; Part III on the diode, MOSFET and BJT topics needed for circuit design, and Part IV on photonic devices, microwave FETs, negative-resistance diodes, and power devices. Within each part, material is presented hierarchically, with core topics first, followed by advanced topics.
PART I INTRODUCTION TO SEMICONDUCTORS ; 1 lNTRODUCTION TO CRYSTALS AND
CURRENT CARRIERS ; IN SEMICONDUCTORS, THE ATOMIC-BOND MODEL ; 1.1
INTRODUCTION TO CRYSTALS ; 1.1.1 Atomic Bonds ; 1.1.2 Three-Dimensional
Crystals ; 1.1.3 Two-Dimensional Crystals: Graphene and Carbon Nanotubes ;
1.2 CURRENT CARRIERS ; 1.2.1 Two Types of Current Carriers in Semiconductors
; 1.2.2 N*Type and P-Type Doping ; 1.2.3 Electroneutrality Equation ; 1.2.4
Electron and Hole Generation and Recombination in Thermal Equilibrium ; 1.3
BASICS OF CRYSTAL GROWTH AND DOPING TECHNIQUES ; 1.3.1 Crystal-Growth
Techniques ; 1.3.2 Doping Techniques ; Summary ; Problems ; Review Questions
; 2 THE ENERGY-BAND MODEL ; 12.1 ELECTRONS AS WAVES ; 2.1.1 De Broglie
Relationship Between Particle and Wave Properties ; 2.1.2 Wave Function and
Wave Packet ; 2.1.3 Schrodinger Equation ; 2.2 ENERGY LEVELS IN ATOMS AND
ENERGY BANDS IN CRYSTALS ; 2.2.1 Atomic Structure ; 2.2.2 Energy Bands in
Metals ; 2.2.3 Energy Gap and Energy Bands in Semiconductors and Insulators ;
12.3 ELECTRONS AND HOLES AS PARTICLES ; 2.3.1 Effective Mass and Real E-k
Diagrams ; 2.3.2 The Question of Electron Size: The Uncertainty Principle ;
2.3.3 Density of Electron States ; 2.4 POPULATION OF ELECTRON STATES,
CONCENTRATIONS OF ; ELECTRONS A:"D HOLES ; 2.4.1 Fermi-Dirac Distribution ;
2.4.2 Maxwell-Boltzmann Approximation and Effective Density of States ; 2.4.3
Fermi Potential and Doping ; 2.4.4 Nonequilibrium Carrier Concentrations and
Quasi-Fermi Levels ; Summary ; Problems ; Review Questions ; 3 DRIFT ; 3.1
ENERGY BANDS WITH APPLIED ELECTRIC FIELD ; 3.1.1 Energy-Band Presentation of
Drift Current ; 3.1.2 Resistance and Power Dissipation due to Carrier
Scattering ; 3.2 OHM'S LAW, SHEET RESISTANCE, AND CONDUCTIVITY ; 3.2.1
Designing Integrated-Circuit Resistors ; 3.2.2 Differential Form of Ohm's Law
; 3.2.3 Conductivity Ingredients ; 3.3 CARRIER MOBILITY ; 3.3.1 Thermal and
Drift Velocities ; 3.3.2 Mobility Definition ; 3.3.3 Scattering Time and
Scattering Cross Section ; 3.3.4 Mathieson's Rule ; 3.3.5 Hall Effect ;
Summary ; Problems ; Review Questions ; 4 DlFFUSION ; 4.1 DIFFUSION-CURRENT
EQUATION ; 4.2 DIFFUSION COEFFICIENT ; 4.2.1 Einstein Relationship ; L4.2.2
Haynes-Shockley Experiment ; 4.2.3 Arrhenius Equation ; 4.3 BASIC CONTINUITY
EQUATION ; Summary ; Problems ; Review Questions ; 5 GENERATION AND
RECOMBINATION ; 5.1 GENERATION AND RECOMBINATION MECHANISMS ; 5.2 GENERAL
FORM OF THE CONTINUITY EQUATION ; 5.2.1 Recombination and Generation Rates ;
5.2.2 Minority-Carrier Lifetime ; 5.2.3 Diffusion Length ; 5.3 GENERATION AND
RECOMBINATION PHYSICS AND SHOCKLEYREAD- ; HALL (SRH) THEORY ; 5.3.1 Capture
and Emission Rates in Thermal Equilibrium ; 5.3.2 Steady-State Equation for
the Effective Thermal Generation/Recombination ; Rate ; 5.3.3 Special Cases ;
5.3.4 Surface Generation and Recombination ; Summary ; Problems ; Review
Questions ; PART II FUNDAMENTAL DEVICE STRUCTURES ; 6 JUNCTIONS ; 6.1 P-N
JUNCTION PRINCIPLES ; 6.1.1 p-~ Junction in Thermal Equilibrium ; 6.1.2
Reverse-Biased P-N Junction ; 6.1.3 Forward-Biased P-K Junction ; 6.1.4
Breakdown Phenomena ; 6.2 DC MODEL ; 6.2.1 Basic Current-Voltage (I-V)
Equation ; 6.2.2 Important Second-Order Effects ; 6.2.3 Temperature Effects ;
6.3 CAPACITA CE OF REVERSE-BIASED P-:-I JUNCTION ; 6.3.1 C-V Dependence ;
6.3.2 Depletion-Layer Width: Solving the Poisson Equation ; 6.3.3 SPICE Model
for the Depletion-Layer Capacitance ; 6.4 STORED-CHARGE EFFECTS ; 6.4.1
Stored Charge and Transit Time ; 6.4.2 Relationship Between the Transit Time
and the Minority-Carrier ; Lifetime ; 6.4.3 Switching Characteristics:
Reverse-Recovery Time ; 6.5 METAL-SEMICONDUCTOR CONTACT ; 6.5.1 Schottky
Diode: Rectifying Metal-Semiconductor Contact ; 6.5.2 Ohmic
Metal-Semiconductor Contacts ; Summary ; Problems ; Review Questions ; 7
MOSFET ; 7.1 MOS CAPACITOR ; 7.1.1 Properties of the Gate Oxide and the
Oxide-Semiconductor Interface ; 7.1.2 C-V Curve and the Surface-Potential
Dependence on Gate Voltage ; 7.1.3 Energy-Band Diagrams ; 7.1.4 Flat4Band
Capacitance and Debye Length ; 7.2 MOSFET PRINCIPLES ; B.1.1 MOSFET Structure
; 7.2.2 MOSFET as a Voltage-Controlled Switch ; B.1.3 The Threshold Voltage
and the Body Effect ; B.1.4 MOSFET as a Voltage-Controlled Current Source:
Mechanisms of ; Current Saturation ; 7.3 PRINCIPAL CURRENT-VOLTAGE
CHARACTERISTICS AND EQUATIONS ; 7.3.1 SPICE LEVEL 1 Model ; 7.3.2 SPICE LEVEL
2 Model ; 7.3.3 SPICE LEVEL 3 Model: Principal Effects ; 7.4 SECO:\D-OROER
EFFECTS ; 7.4.1 Mobility Reduction with Gate Voltage ; 7.4.2 Velocity
Saturation (Mobility Reduction with Drain Voltage) ; 7.4.3 Finite Output
Resistance ; 7.4.4 Threshold-Voltage-Related Short-Channel Effects ; 7.4.5
Threshold Voltage Related Narrow-Channel Effects ; 7.4.6 Subthreshold Current
; 7.5 Nanoscale MOSFETs ; 7.5.1 Down-Scaling Benefits and Rules ; 7.5.2
Leakage Currents ; 7.5.3 Advanced MOSFETs ; 7.6 MOS-BASED MEMORY DEVICES ;
7.6.1 1C1T DRAM Cell ; 7.6.2 Flash-Memory Cell ; Summary ; Problems ; Review
Questions ; 8 BJT ; 8.1 B.JT PRINCIPLES ; 8.1.1 BJT as a Voltage-Controlled
Current Source ; 8.1.2 BJT Currents and Gain Definitions ; 8.1.3 Dependence
of ? and ? Current Gains on Technological Parameters ; 8.1.4 The Four Modes
of Operation: BJT as a Switch ; 8.1.5 Complementary BJT ; 8.1.6 BJT Versus
MOSFET ; 8.2 PRINCIPAL CURRENT-VOLTAGE CHARACTERISTICS, EBERE-MOLL ; MODEL IN
SPICE ; 8.2.1 Injection Version ; 8.2.2 Transport Version ; 8.2.3 SPICE
Version ; 8.3 SECOND*ORDER EFFECTS ; 8.3.1 Early Effect: Finite Dynamic
Output Resistance ; 8.3.2 Parasitic Resistances ; 8.3.3 Dependence of
Common-Emitter Current Gain on Transistor Current: ; Low-Current Effects ;
8.3.4 Dependence of Common-Emitter Current Gain on Transistor Current: ;
Gummel-Poon Model for High-Current Effects ; 8.4 HETEROJUNCTION BIPOLAR
TRANSISTOR ; Summary ; Problems ; Review Questions ; PART III SUPPLEMENTARY
TOPICS ; 9 PHYSICS OF NANOSCALE DEVICES ; 9.1 SINGLE-CARRIER EVENTS ; 9.1.1
Beyond the Classical Principle of Continuity ; 9.1.2 Current-Time Form of
Uncertainty Principle ; 9.1.3 Carrier-Supply Limit to Diffusion Current ;
9.1.4 Spatial Uncertainty ; 9.1.5 Direct Nonequilibrium Modeling of
Single-Carrier Events ; 9.2 TWO-DIMENSIONAL TRANSPORT IN MOSFETs AND HEMTs ;
9.2.1 Quantum Confinement ; 9.2.2 HEMT Structure and Characteristics ; 9.2.3
Application of Classical MOSFET Equations to Two-Dimensional ; Transport in
MOSFETs and HEMTs ; 9.3 ONE-DIMENSUIONAL TRANSPORT IN NANOWIRES AND CARBON ;
NANOTUBES ; 9.3.1 Ohmic Transport in Nanowire and Carbon-Nanotube FETs ;
9.3.2 One-Dimensional Ballistic Transport and the Quantum Conductance ; Limit
; Summary ; Problems ; Review Questions ; 10 DEVICE ELECTRONICS, EQUIVALENT
CIRCUITS A D SPICE ; PARAMETERS ; 10.l DIODES ; 10.1.1 Static Model and
Parameters in SPICE ; 10.1.2 Large-Signal Equivalent Circuit in SPICE ;
10.1.3 Parameter Measurement ; 10.1.4 Small-Signal Equivalent Circuit ; 10.2
MOSFET ; 10.2.1 Static Model and Parameters; LEVEL 3 in SPICE ; 10.2.2
Parameter Measurement ; 10.2.3 Large-Signal Equivalent Circuit and Dynamic
Parameters in SPICE ; 10.2.4 Simple Digital ~1od.el ; 10.2.5 Small-Signal
Equivalent Circuit ; 10.3 BJT ; 10.3.1 Static Model and Parameters:
Ebers-Moll and Gummel-Poon Levels ; in SPICE ; 10.3.2 Parameter Measurement ;
10.3.3 Large-Signal Equivalent Circuit and Dynamic Parameters in SPICE ;
10.3.4 Small-Signal Equivalent Circuit ; Summary ; Problems ; Review
Questions ; 11 PHOTONIC DEVICES ; 11.1 LIGHT EMITTING DIODES (LED) ; 11.2
PHOTODETECTORS AND SOLAR CELLS ; 11.2.1 Biasing for Photodetector and
Solar-Cell Applications ; 11.2.2 Carrier Generation in Photodetectors and
Solar Cells ; 11.2.3 Photocurrent Equation ; 11.3 LASERS ; 11.3.1 Stimulated
Emission, Inversion Population, and Other Fundamental Concepts ; 11.3.2 A
Typical Heterojunction Laser ; Summary ; Problems ; Review Questions ; 12
JFET AND MESFET ; 12.1 JFET ; 12.1.1 JFET Structure ; 12.1.2 JFET
Characteristics ; 12.1.3 SPICE Model and Parameters ; 12.2 MESFET ; 12.2.1
MESFET Structure ; 12.2.2 MESFET Characteristics ; 12.2.3 SPICE Model and
Parameters ; Summary ; Problems ; Review Questions ; 13 POWER DEVICES ; 13.1
POWER DIODES ; 13.1.1 Drift Region in Power Devices ; 13.1.2 Switching
Characteristics ; 13.1.3 Schottky Diode ; 13.2 POWER MOSFET ; 13.3 IGBT ;
13.4 THYRISTOR ; Summary ; Problems ; Review Questions
Sima Dimitrijev is Professor at the School of Microelectronic Engineering at Griffith University in Australia. He is the author of Understanding Semiconductor Devices (OUP, 2000) as well as numerous other publications in the areas of MOSFET technology, modeling and applications.