Muutke küpsiste eelistusi

E-raamat: Probabilistic Graphical Models: 7th European Workshop, PGM 2014, Utrecht, The Netherlands, September 17-19, 2014. Proceedings

  • Formaat - PDF+DRM
  • Hind: 55,56 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book constitutes the refereed proceedings of the 7th International Workshop on Probabilistic Graphical Models, PGM 2014, held in Utrecht, The Netherlands, in September 2014. The 38 revised full papers presented in this book were carefully reviewed and selected from 44 submissions. The papers cover all aspects of graphical models for probabilistic reasoning, decision making, and learning.
Structural Sensitivity for the Knowledge Engineering of Bayesian
Networks.- A Pairwise Class Interaction Framework for Multilabel
Classification.- From Information to Evidence in a Bayesian Network.-
Learning Gated Bayesian Networks for Algorithmic Trading.- Local Sensitivity
of Bayesian Networks to Multiple Simultaneous Parameter Shifts.- Bayesian
Network Inference Using Marginal Trees.- On SPI-Lazy Evaluation of Influence
Diagrams.- Extended Probability Trees for Probabilistic Graphical Models.-
Mixture of Polynomials Probability Distributions for Grouped Sample Data.-
Trading off Speed and Accuracy in Multilabel Classification.- Robustifying
the Viterbi algorithm.- Extended Tree Augmented Naive Classifier.- Evaluation
of Rules for Coping with Insufficient Data in Constraint-based Search
Algorithms.- Supervised Classification Using Hybrid Probabilistic Decision
Graphs.- Towards a Bayesian Decision Theoretic Analysis of Contextual Effect
Modifiers.- Discrete Bayesian Network Interpretation of the Cox's
Proportional Hazards Model.- Minimizing Relative Entropy in Hierarchical
Predictive Coding.- Treewidth and the Computational Complexity of MAP
Approximations.- Bayesian Networks with Function Nodes.- A New Method for
Vertical Parallelisation of TAN Learning Based on Balanced Incomplete Block
Designs.- Equivalences Between Maximum A Posteriori Inference in Bayesian
Networks and Maximum Expected Utility Computation in Influence Diagrams.-
Speeding Up $k$-Neighborhood Local Search in Limited Memory Influence
Diagrams.- Inhibited Effects in CP-logic.- Learning Parameters in Canonical
Models using Weighted Least Squares.- Learning Marginal AMP Chain Graphs
under Faithfulness.- Learning Maximum Weighted (k+1)-order Decomposable
Graphs by Integer Linear Programming.- Multi-label Classification for Tree
and Directed Acyclic Graphs Hierarchies.- Min-BDeu and Max-BDeu Scores for
Learning Bayesian Networks.- Causal Discovery from Databases with Discrete
and ContinuousVariables.- On Expressiveness of the AMP Chain Graph
Interpretation.- Learning Bayesian Network Structures  when Discrete and
Continuous Variables are Present.- Learning Neighborhoods of High Confidence
in Constraint-Based Causal Discovery.- Causal Independence Models for
Continuous Time Bayesian Networks.- Expressive Power of Binary Relevance and
Chain Classifiers Based on Bayesian Networks for Multi-Label Classification.-
An Approximate Tensor-Based Inference Method Applied to the Game of
Minesweeper.- Compression of Bayesian Networks with NIN-AND Tree Modeling.- A
Study of Recently Discovered Equalities about Latent Tree Models using
Inverse Edges.- An Extended MPL-C Model for Bayesian Network Parameter
Learning with Exterior Constraints.