Muutke küpsiste eelistusi

E-raamat: Probabilistic Graphical Models for Computer Vision.

(Department of Electrical, Computer, and Systems Engineering, Rensselaer Polytechnic Institute, New York, USA)
  • Formaat: EPUB+DRM
  • Ilmumisaeg: 12-Dec-2019
  • Kirjastus: Academic Press Inc
  • Keel: eng
  • ISBN-13: 9780128034958
  • Formaat - EPUB+DRM
  • Hind: 95,48 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: EPUB+DRM
  • Ilmumisaeg: 12-Dec-2019
  • Kirjastus: Academic Press Inc
  • Keel: eng
  • ISBN-13: 9780128034958

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Probabilistic Graphical Models for Computer Vision introduces probabilistic graphical models (PGMs) for computer vision problems and teaches how to develop the PGM model from training data. This book discusses PGMs and their significance in the context of solving computer vision problems, giving the basic concepts, definitions and properties. It also provides a comprehensive introduction to well-established theories for different types of PGMs, including both directed and undirected PGMs, such as Bayesian Networks, Markov Networks and their variants.

  • Discusses PGM theories and techniques with computer vision examples
  • Focuses on well-established PGM theories that are accompanied by corresponding pseudocode for computer vision
  • Includes an extensive list of references, online resources and a list of publicly available and commercial software
  • Covers computer vision tasks, including feature extraction and image segmentation, object and facial recognition, human activity recognition, object tracking and 3D reconstruction

Arvustused

"The book describes probabilistic graphical models in application to computer vision tasks. The theoretical concepts are accompanied by illustrative figures and algorithms in pseudocode. All the main categories of models are referred to. The applications range from image denoising and segmentation, object detection and tracking to 3D reconstruction and action recognition. It is a book that is valuable for theoreticians and practitioners alike." --zbMath/European Mathematical Society and the Heidelberg Academy of Sciences and Humanities

1. Introduction2. Probability Calculus3. Directed Probabilistic Graphical Models4. Undirected Probabilistic Graphical Models5. PGM Applications in Computer Vision

Qiang Ji is in the Department of Electrical, Computer, and Systems Engineering at Rensselaer Polytechnic Institute, New York, USA