Part I Fundamentals |
|
|
|
3 | (12) |
|
|
3 | (1) |
|
1.1.1 Effects of Uncertainty |
|
|
3 | (1) |
|
|
4 | (1) |
|
1.3 Basic Probabilistic Models |
|
|
5 | (3) |
|
|
6 | (2) |
|
1.4 Probabilistic Graphical Models |
|
|
8 | (2) |
|
1.5 Representation, Inference, and Learning |
|
|
10 | (1) |
|
|
11 | (1) |
|
|
12 | (1) |
|
|
13 | (1) |
|
|
13 | (2) |
|
|
15 | (12) |
|
|
15 | (1) |
|
|
16 | (2) |
|
|
18 | (5) |
|
2.3.1 Two-Dimensional Random Variables |
|
|
21 | (2) |
|
|
23 | (2) |
|
|
25 | (1) |
|
|
25 | (1) |
|
|
26 | (1) |
|
|
27 | (14) |
|
|
27 | (1) |
|
|
28 | (1) |
|
3.3 Trajectories and Circuits |
|
|
29 | (1) |
|
|
30 | (1) |
|
|
31 | (2) |
|
|
33 | (1) |
|
|
34 | (1) |
|
3.8 Ordering and Triangulation Algorithms |
|
|
35 | (2) |
|
3.8.1 Maximum Cardinality Search |
|
|
35 | (1) |
|
|
36 | (1) |
|
|
37 | (1) |
|
|
37 | (1) |
|
|
38 | (3) |
Part II Probabilistic Models |
|
|
|
41 | (22) |
|
|
41 | (1) |
|
4.1.1 Classifier Evaluation |
|
|
42 | (1) |
|
|
42 | (4) |
|
4.2.1 Naive Bayes Classifier |
|
|
43 | (3) |
|
4.3 Alternative Models: TAN, BAN |
|
|
46 | (2) |
|
4.4 Semi-Naive Bayesian Classifiers |
|
|
48 | (2) |
|
4.5 Multidimensional Bayesian Classifiers |
|
|
50 | (4) |
|
4.5.1 Multidimensional Bayesian Network Classifiers |
|
|
51 | (1) |
|
4.5.2 Bayesian Chain Classifiers |
|
|
52 | (2) |
|
4.6 Hierarchical Classification |
|
|
54 | (2) |
|
4.6.1 Chained Path Evaluation |
|
|
55 | (1) |
|
|
56 | (4) |
|
4.7.1 Visual Skin Detection |
|
|
56 | (2) |
|
|
58 | (2) |
|
|
60 | (1) |
|
|
60 | (1) |
|
|
61 | (2) |
|
|
63 | (20) |
|
|
63 | (1) |
|
|
64 | (4) |
|
5.2.1 Parameter Estimation |
|
|
66 | (1) |
|
|
67 | (1) |
|
|
68 | (9) |
|
|
70 | (2) |
|
|
72 | (2) |
|
|
74 | (2) |
|
|
76 | (1) |
|
|
77 | (3) |
|
|
78 | (1) |
|
5.4.2 Gesture Recognition |
|
|
78 | (2) |
|
|
80 | (1) |
|
|
80 | (1) |
|
|
81 | (2) |
|
|
83 | (18) |
|
|
83 | (1) |
|
|
84 | (4) |
|
6.2.1 Regular Markov Random Fields |
|
|
86 | (2) |
|
|
88 | (1) |
|
|
88 | (2) |
|
|
90 | (2) |
|
6.5.1 Parameter Estimation with Labeled Data |
|
|
90 | (2) |
|
6.6 Conditional Random Fields |
|
|
92 | (1) |
|
|
93 | (5) |
|
|
93 | (2) |
|
6.7.2 Improving Image Annotation |
|
|
95 | (3) |
|
|
98 | (1) |
|
|
98 | (1) |
|
|
99 | (2) |
|
7 Bayesian Networks: Representation and Inference |
|
|
101 | (36) |
|
|
101 | (1) |
|
|
102 | (9) |
|
|
103 | (3) |
|
|
106 | (5) |
|
|
111 | (18) |
|
7.3.1 Singly Connected Networks: Belief Propagation |
|
|
112 | (4) |
|
7.3.2 Multiple Connected Networks |
|
|
116 | (8) |
|
7.3.3 Approximate Inference |
|
|
124 | (2) |
|
7.3.4 Most Probable Explanation |
|
|
126 | (1) |
|
7.3.5 Continuous Variables |
|
|
127 | (2) |
|
|
129 | (5) |
|
7.4.1 Information Validation |
|
|
129 | (3) |
|
7.4.2 Reliability Analysis |
|
|
132 | (2) |
|
|
134 | (1) |
|
|
135 | (1) |
|
|
135 | (2) |
|
8 Bayesian Networks: Learning |
|
|
137 | (24) |
|
|
137 | (1) |
|
|
137 | (6) |
|
|
137 | (1) |
|
8.2.2 Parameter Uncertainty |
|
|
138 | (1) |
|
|
139 | (3) |
|
|
142 | (1) |
|
|
143 | (10) |
|
|
144 | (2) |
|
8.3.2 Learning a Polytree |
|
|
146 | (1) |
|
8.3.3 Search and Score Techniques |
|
|
147 | (5) |
|
8.3.4 Independence Tests Techniques |
|
|
152 | (1) |
|
8.4 Combining Expert Knowledge and Data |
|
|
153 | (1) |
|
|
154 | (3) |
|
8.5.1 Air Pollution Model for Mexico City |
|
|
154 | (3) |
|
|
157 | (1) |
|
|
157 | (2) |
|
|
159 | (2) |
|
9 Dynamic and Temporal Bayesian Networks |
|
|
161 | (20) |
|
|
161 | (1) |
|
9.2 Dynamic Bayesian Networks |
|
|
161 | (3) |
|
|
163 | (1) |
|
|
163 | (1) |
|
9.3 Temporal Event Networks |
|
|
164 | (5) |
|
9.3.1 Temporal Nodes Bayesian Networks |
|
|
165 | (4) |
|
|
169 | (7) |
|
9.4.1 DBN: Gesture Recognition |
|
|
169 | (4) |
|
9.4.2 TNBN: Predicting HIV Mutational Pathways |
|
|
173 | (3) |
|
|
176 | (1) |
|
|
176 | (1) |
|
|
177 | (4) |
Part III Decision Models |
|
|
|
181 | (18) |
|
|
181 | (1) |
|
|
181 | (4) |
|
|
182 | (3) |
|
|
185 | (2) |
|
|
187 | (6) |
|
|
187 | (1) |
|
|
188 | (4) |
|
|
192 | (1) |
|
|
193 | (3) |
|
10.5.1 Decision-Theoretic Caregiver |
|
|
193 | (3) |
|
|
196 | (1) |
|
|
196 | (1) |
|
|
197 | (2) |
|
11 Markov Decision Processes |
|
|
199 | (20) |
|
|
199 | (1) |
|
|
199 | (3) |
|
|
202 | (2) |
|
|
202 | (1) |
|
|
203 | (1) |
|
|
204 | (3) |
|
|
206 | (1) |
|
|
206 | (1) |
|
11.5 Partially Observable Markov Decision Processes |
|
|
207 | (1) |
|
|
208 | (6) |
|
11.6.1 Power Plant Operation |
|
|
208 | (2) |
|
11.6.2 Robot Task Coordination |
|
|
210 | (4) |
|
|
214 | (1) |
|
|
214 | (1) |
|
|
215 | (4) |
Part IV Relational and Causal Models |
|
|
12 Relational Probabilistic Graphical Models |
|
|
219 | (18) |
|
|
219 | (1) |
|
|
220 | (3) |
|
12.2.1 Propositional Logic |
|
|
220 | (1) |
|
12.2.2 First-Order Predicate Logic |
|
|
221 | (2) |
|
12.3 Probabilistic Relational Models |
|
|
223 | (2) |
|
|
225 | (1) |
|
|
225 | (1) |
|
12.4 Markov Logic Networks |
|
|
225 | (3) |
|
|
227 | (1) |
|
|
227 | (1) |
|
|
228 | (1) |
|
|
228 | (1) |
|
12.6 Probabilistic Relational Student Model |
|
|
228 | (5) |
|
|
231 | (2) |
|
|
233 | (1) |
|
|
233 | (1) |
|
|
234 | (3) |
|
13 Graphical Causal Models |
|
|
237 | (10) |
|
|
237 | (1) |
|
13.2 Causal Bayesian Networks |
|
|
238 | (2) |
|
|
240 | (2) |
|
|
240 | (1) |
|
|
241 | (1) |
|
13.4 Learning Causal Models |
|
|
242 | (2) |
|
|
244 | (1) |
|
13.5.1 Learning a Causal Model for ADHD |
|
|
244 | (1) |
|
|
245 | (1) |
|
|
245 | (1) |
|
|
246 | (1) |
Glossary |
|
247 | (4) |
Index |
|
251 | |