Muutke küpsiste eelistusi

E-raamat: On the Problem of Infinite Spin in Total Collisions of the Planar $N$-Body Problem

Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 112,71 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

"For the planar N-body problem, we introduce a class of moving coordinates suitable for orbits near central configurations, especially for total collision orbits, which is the main new ingredient of this paper. The moving coordinates allow us to reduce the degeneracy of the N-Body problem from its intrinsic symmetrical characteristic. First, we give a full answer to the infinite spin or Painleve-Wintner problem in the case corresponding to nondegenerate central configurations. Then following some original ideas of C.L. Siegel, especially the idea of normal forms, and applying the theory of central manifolds, we give a partial answer to the problem in the case corresponding to degenerate central configurations. We completely answer the problem in the casecorresponding to central configurations with degree of degeneracy one. Combining some results on the planar nonhyperbolic equilibrium point, we give a criterion in the case corresponding to central configurations with degree of degeneracy two. We furtheranswer the problem in the case corresponding to all known central configurations of four bodies. Therefore, we solve the problem for almost every choice of the masses of the four-body problem. Finally, we give a measure of the set of initial conditions leading to total collisions"-- Provided by publisher.
Chapters
1. Introduction
2. Preliminaries
3. Equations of Motion for Collision Orbits and $PISPW$
4. Resolving $PISPW$
5. Manifold of Collision Orbits
6. Conclusion and Questions
A. Degeneracy of Central Configurations
B. Central Configurations of Four Bodies
C. Diagonalization of the Linear Part
D. Normal Forms
E. Plane Equilibrium Points
Xiang Yu, Tianjin University, People's Republic of China, and Southwestern University of Finance and Economics, Chengdu, People's Republic of China.