Muutke küpsiste eelistusi

E-raamat: Problems and Methods of Optimal Structural Design

Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 55,56 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

The author offers a systematic and careful development of many aspects of structural optimization, particularly for beams and plates. Some of the results are new and some have appeared only in specialized Soviet journals, or as pro­ ceedings of conferences, and are not easily accessible to Western engineers and mathematicians. Some aspects of the theory presented here, such as optimiza­ tion of anisotropic properties of elastic structural elements, have not been con­ sidered to any extent by Western research engineers. The author's treatment is "classical", i.e., employing classical analysis. Classical calculus of variations, the complex variables approach, and the Kolosov­ Muskhelishvili theory are the basic techniques used. He derives many results that are of interest to practical structural engineers, such as optimum designs of structural elements submerged in a flowing fluid (which is of obvious interest in aircraft design, in ship building, in designing turbines, etc.). Optimization with incomplete information concerning the loads (which is the case in a great majority of practical design considerations) is treated thoroughly. For example, one can only estimate the weight of the traffic on a bridge, the wind load, the additional loads if a river floods, or possible earthquake loads.

Muu info

Springer Book Archives
1. Formulation of Problems and Research Techniques in Structural
Optimization.- 1.1. Formulation of Some Optimal Design Problems.- 1.2. Basic
Functional.- 1.3. Principal and Auxiliary Control Functions.- 1.4.
Application of Variational Principles of the Theory of Elasticity to
Eliminating Differential Relations.- 1.5. Reduction to Problems with Integral
Functions.- 1.6. Necessary Conditions for Optimality.- 1.7. Extremal
Conditions for Problems with Nonadditive Functional.- 1.8. Problems with
Unknown Boundaries.- 1.9. Dual Problems.- 1.10. Application of Numerical
Techniques in Solving Problems of Optimal Design.-
2. One-Dimensional
Optimization Problems.- 2.1. Optimization Problems for Beams Subjected to
Bending.- 2.2. Optimization of Stability for Elastic Beams.- 2.3. Optimal
Configuration of Branched Beams.- 2.4. Design of Optimum Curved Beams.- 2.5.
Optimization of Nonuniformly Heated and Prestressed Beams.-
3. Optimal Design
of Elastic Plates: Control by Varying Coefficients of the Equations.- 3.1.
Plates Having the Greatest Rigidity.- 3.2. Numerical Search for Optimal
Thickness Distribution of Homogeneous Plates.- 3.3. Optimal Rigidity of
Trilayer Plates.- 3.4. Strongest Plates.- 3.5. Optimum Support Conditions for
Thin Plates.-
4. Optimization Problems with Unknown Boundaries in the Theory
of Elasticity: Control by Varying the Boundary of the Domain.- 4.1.
Maximizing the Torsional Rigidity of a Bar.- 4.2. Finding Optimum Shapes of
Cross-Sectional Areas for Bars in Torsion.- 4.3. Torsion of Piecewise
Homogeneous Bars and Problems of Optimal Reinforcement.- 4.4. Optimization of
Stress Concentration for Elastic Plates with Holes.- 4.5. Determining the
Shape of Uniformly Stressed Holes.- 4.6. Optimization of the Shapes of Holes
in Plates Subjected to Bending.-
5. Optimization of Anisotropic Properties of
Elastic Bodies.- 5.1. Optimization Problems for Anisotropic Bodies.- 5.2. An
Extremal Problem for Rotation of a Matrix.- 5.3. Optimal Anisotropy for Bars
in Torsion.- 5.4. Optimization of Anisotropic Properties of an Elastic Medium
in Two-Dimensional Problems of the Theory of Elasticity.- 5.5. Computation of
Optimum Anisotropie Properties for Elastic Bodies.- 5.6. Some Comments
Concerning the Shapes of Anisotropie Bodies and Problems of Simultaneous
Optimization of the Shape and of the Orientation of Axes of Anisotropy.-
6.
Optimal Design in Problems of Hydroelasticity.- 6.1. State Equations for
Plates That Vibrate in an Ideal Fluid.- 6.2. Optimizing the Frequency of
Vibrations.- 6.3. Determining the Reaction of a Fluid When the Flow Field and
the Motion of the Plate are Two-Dimensional and the Flow is Solenoidal.- 6.4.
Finding the Optimum Shape of a Vibrating Plate.- 6.5. Maximizing the
Divergence Velocity of a Plate Subjected to the Flow of an Ideal Fluid.- 6.6.
A Scheme in Solenoidal Flow for Investigating Equilibrium Shapes of Elastic
Plates and a Problem of Optimization.-
7. Optimal Design under Conditions of
Incomplete Information Concerning External Actions and Problems of
Multipurpose Optimization.- 7.1. Formulation of Optimization Problems under
Conditions of Incomplete Information.- 7.2. Design of Beams Having the
Smallest Weight for Certain Classes of Loads and with Constraints of
Strength.- 7.3. Optimization of Rigidity for Beams.- 7.4. Design of Plates
for Certain Classes of Loads.- 7.5. Optimization of Beams Subjected to
Bending and Torsion. Multiple Criteria Optimization Problems.- 7.6. Design of
a Circular Plate Having Minimum Weight with Constraints on Rigidity and
Natural Frequencies of Vibrations.- 7.7. Construction of Quasi-Optimal
Solutions to the Multipurpose Design Problems.