Muutke küpsiste eelistusi

E-raamat: Proceedings of International Conference on Image, Vision and Intelligent Systems 2023 (ICIVIS 2023)

Edited by , Edited by , Edited by
  • Formaat - EPUB+DRM
  • Hind: 308,13 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book constitutes the refereed proceedings of ICIVIS2023, held in Baoding, China, in August 2023. The papers included in the proceedings have been carefully reviewed and selected from the submitted manuscripts in the areas of image, vision and intelligent systems.
 
This book provides a reference for theoretical innovative problems as well as recent practical solutions and applications for the state-of-the-art results in image, vision and intelligent systems. The intended audience of the book includes researchers, professors, experts, practitioners and professionals in the field of image, vision and intelligent systems worldwide.
High Order Conditional Random Field based Cervical Cancer
Histopathological Image Classification.- Skin Cancer Image Identification
Using Deep Convolutional Neural Networks.- Deep Learning-based Prediction of
Myelosuppression in Lymphoma Patients during Chemotherapy Using Multimodal
Radiological Images with Subcutaneous Adipose Tissue.- Retrievable Image
Encryption Based on Adaptive Block Compressed Sensing.- Research on Prostate
Cancer Pathological Image Classification Method based on Vision
Transformer.- Multi-Disease Detection and Segmentation of Chest CT Images
Based on Coarse-to-Fine Pipeline Models.- Dual Branch Image-guided Network
with Multi-stage Iterative Refinement for Depth Completion.- CT images
super-resolution reconstruction Using Bi-Level Routing Attention and
Consecutive Dilated Convolutions.- ASPCD-UNet: An improved network for change
detection.- SE-UNet: Channel Attention based UNet for Water body 
Segmentation from SAR Image.