Preface |
|
xiii | |
Acknowledgements |
|
xvii | |
List of Figures |
|
xix | |
List of Tables |
|
xxiii | |
Nomenclature |
|
xxv | |
Part I Fundamentals |
|
|
|
3 | (16) |
|
1.1 Motivational Illustrations |
|
|
3 | (1) |
|
|
4 | (8) |
|
1.2.1 Diagnosis Techniques |
|
|
4 | (3) |
|
1.2.2 Monitoring Techniques |
|
|
7 | (5) |
|
|
12 | (4) |
|
1.3.1 Problem Overview and Illustrative Example |
|
|
12 | (1) |
|
1.3.2 Overview of Proposed Work |
|
|
12 | (4) |
|
|
16 | (3) |
|
2 Prerequisite Fundamentals |
|
|
19 | (43) |
|
|
19 | (1) |
|
2.2 Bayesian Inference and Parameter Estimation |
|
|
19 | (19) |
|
2.2.1 Tutorial on Bayesian Inference |
|
|
24 | (3) |
|
2.2.2 Tutorial on Bayesian Inference with Time Dependency |
|
|
27 | (5) |
|
2.2.3 Bayesian Inference vs. Direct Inference |
|
|
32 | (1) |
|
2.2.4 Tutorial on Bayesian Parameter Estimation |
|
|
33 | (5) |
|
|
38 | (6) |
|
2.4 Techniques for Ambiguous Modes |
|
|
44 | (7) |
|
2.4.1 Tutorial on Θ Parameters in the Presence of Ambiguous Modes |
|
|
46 | (1) |
|
2.4.2 Tutorial on Probabilities Using Θ Parameters |
|
|
47 | (1) |
|
2.4.3 Dempster—Shafer Theory |
|
|
48 | (3) |
|
2.5 Kernel Density Estimation |
|
|
51 | (5) |
|
2.5.1 From Histograms to Kernel Density Estimates |
|
|
52 | (2) |
|
2.5.2 Bandwidth Selection |
|
|
54 | (1) |
|
2.5.3 Kernel Density Estimation Tutorial |
|
|
55 | (1) |
|
|
56 | (4) |
|
2.6.1 Bootstrapping Tutorial |
|
|
57 | (1) |
|
2.6.2 Smoothed Bootstrapping Tutorial |
|
|
57 | (3) |
|
|
60 | (1) |
|
|
61 | (1) |
|
|
62 | (6) |
|
|
62 | (1) |
|
3.2 Bayesian Approach for Control Loop Diagnosis |
|
|
62 | (3) |
|
|
62 | (1) |
|
|
63 | (1) |
|
3.2.3 Historical Dataset D |
|
|
64 | (1) |
|
3.3 Likelihood Estimation |
|
|
65 | (2) |
|
|
67 | (1) |
|
|
67 | (1) |
|
4 Accounting for Autodependent Modes and Evidence |
|
|
68 | (15) |
|
|
68 | (1) |
|
4.2 Temporally Dependent Evidence |
|
|
68 | (7) |
|
4.2.1 Evidence Dependence |
|
|
68 | (2) |
|
4.2.2 Estimation of Evidence-transition Probability |
|
|
70 | (4) |
|
4.2.3 Issues in Estimating Dependence in Evidence |
|
|
74 | (1) |
|
4.3 Temporally Dependent Modes |
|
|
75 | (6) |
|
|
75 | (2) |
|
4.3.2 Estimating Mode Transition Probabilities |
|
|
77 | (4) |
|
4.4 Dependent Modes and Evidence |
|
|
81 | (1) |
|
|
82 | (1) |
|
|
82 | (1) |
|
5 Accounting for Incomplete Discrete Evidence |
|
|
83 | (13) |
|
|
83 | (1) |
|
5.2 The Incomplete Evidence Problem |
|
|
83 | (2) |
|
5.3 Diagnosis with Incomplete Evidence |
|
|
85 | (9) |
|
5.3.1 Single Missing Pattern Problem |
|
|
86 | (6) |
|
5.3.2 Multiple Missing Pattern Problem |
|
|
92 | (1) |
|
5.3.3 Limitations of the Single and Multiple Missing Pattern Solutions |
|
|
93 | (1) |
|
|
94 | (1) |
|
|
94 | (2) |
|
6 Accounting for Ambiguous Modes: A Bayesian Approach |
|
|
96 | (16) |
|
|
96 | (1) |
|
6.2 Parametrization of Likelihood Given Ambiguous Modes |
|
|
96 | (3) |
|
6.2.1 Interpretation of Proportion Parameters |
|
|
96 | (1) |
|
6.2.2 Parametrizing Likelihoods |
|
|
97 | (1) |
|
6.2.3 Informed Estimates of Likelihoods |
|
|
98 | (1) |
|
6.3 Fagin—Halpern Combination |
|
|
99 | (1) |
|
6.4 Second-order Approximation |
|
|
100 | (4) |
|
6.4.1 Consistency of Θ Parameters |
|
|
101 | (1) |
|
6.4.2 Obtaining a Second-order Approximation |
|
|
101 | (2) |
|
6.4.3 The Second-order Bayesian Combination Rule |
|
|
103 | (1) |
|
6.5 Brief Comparison of Combination Methods |
|
|
104 | (1) |
|
6.6 Applying the Second-order Rule Dynamically |
|
|
105 | (2) |
|
6.6.1 Unambiguous Dynamic Solution |
|
|
105 | (1) |
|
6.6.2 The Second-order Dynamic Solution |
|
|
106 | (1) |
|
|
107 | (4) |
|
|
107 | (1) |
|
|
107 | (1) |
|
6.7.3 Expected Value Diagnosis |
|
|
107 | (4) |
|
|
111 | (1) |
|
|
111 | (1) |
|
7 Accounting for Ambiguous Modes: A Dempster—Shafer Approach |
|
|
112 | (14) |
|
|
112 | (1) |
|
7.2 Dempster—Shafer Theory |
|
|
112 | (4) |
|
7.2.1 Basic Belief Assignments |
|
|
112 | (2) |
|
7.2.2 Probability Boundaries |
|
|
114 | (1) |
|
7.2.3 Dempster's Rule of Combination |
|
|
114 | (1) |
|
7.2.4 Short-cut Combination for Unambiguous Priors |
|
|
115 | (1) |
|
7.3 Generalizing Dempster—Shafer Theory |
|
|
116 | (8) |
|
7.3.1 Motivation: Difficulties with BBAs |
|
|
117 | (2) |
|
7.3.2 Generalizing the BBA |
|
|
119 | (3) |
|
7.3.3 Generalizing Dempster's Rule |
|
|
122 | (1) |
|
7.3.4 Short-cut Combination for Unambiguous Priors |
|
|
123 | (1) |
|
|
124 | (1) |
|
|
125 | (1) |
|
8 Making Use of Continuous Evidence Through Kernel Density Estimation |
|
|
126 | (18) |
|
|
126 | (1) |
|
8.2 Performance: Continuous vs. Discrete Methods |
|
|
127 | (5) |
|
8.2.1 Average False Negative Diagnosis Criterion |
|
|
127 | (2) |
|
8.2.2 Performance of Discrete and Continuous Methods |
|
|
129 | (3) |
|
8.3 Kernel Density Estimation |
|
|
132 | (5) |
|
8.3.1 From Histograms to Kernel Density Estimates |
|
|
132 | (2) |
|
8.3.2 Defining a Kernel Density Estimate |
|
|
134 | (1) |
|
8.3.3 Bandwidth Selection Criterion |
|
|
135 | (1) |
|
8.3.4 Bandwidth Selection Techniques |
|
|
136 | (1) |
|
|
137 | (2) |
|
8.4.1 Independence Assumptions |
|
|
138 | (1) |
|
8.4.2 Principal and Independent Component Analysis |
|
|
139 | (1) |
|
|
139 | (3) |
|
8.5.1 Kernel Density Regression |
|
|
140 | (1) |
|
8.5.2 Applying Kernel Density Regression for a Solution |
|
|
141 | (1) |
|
|
142 | (1) |
|
|
143 | (1) |
|
|
143 | (1) |
|
9 Accounting for Sparse Data Within a Mode |
|
|
144 | (28) |
|
|
144 | (1) |
|
9.2 Analytical Estimation of the Monitor Output Distribution Function |
|
|
145 | (5) |
|
9.2.1 Control Performance Monitor |
|
|
145 | (1) |
|
9.2.2 Process Model Monitor |
|
|
146 | (2) |
|
9.2.3 Sensor Bias Monitor |
|
|
148 | (2) |
|
9.3 Bootstrap Approach to Estimating Monitor Output Distribution Function |
|
|
150 | (14) |
|
9.3.1 Valve Stiction Identification |
|
|
150 | (3) |
|
9.3.2 The Bootstrap Method |
|
|
153 | (3) |
|
9.3.3 Illustrative Example |
|
|
156 | (4) |
|
|
160 | (4) |
|
|
164 | (6) |
|
9.4.1 Process Description |
|
|
164 | (3) |
|
9.4.2 Diagnostic Settings and Results |
|
|
167 | (3) |
|
|
170 | (1) |
|
|
170 | (2) |
|
10 Accounting for Sparse Modes Within the Data |
|
|
172 | (31) |
|
|
172 | (1) |
|
10.2 Approaches and Algorithms |
|
|
172 | (9) |
|
10.2.1 Approach for Component Diagnosis |
|
|
173 | (3) |
|
10.2.2 Approach for Bootstrapping New Modes |
|
|
176 | (5) |
|
|
181 | (13) |
|
10.3.1 Component-based Diagnosis |
|
|
184 | (4) |
|
10.3.2 Bootstrapping for Additional Modes |
|
|
188 | (6) |
|
|
194 | (4) |
|
|
195 | (1) |
|
10.4.2 Component Diagnosis |
|
|
195 | (3) |
|
10.5 Notes and References |
|
|
198 | (1) |
|
|
199 | (4) |
Part II Applications |
|
|
11 Introduction to Testbed Systems |
|
|
203 | (6) |
|
|
203 | (2) |
|
|
203 | (2) |
|
|
205 | (2) |
|
11.3 Industrial Scale System |
|
|
207 | (1) |
|
|
207 | (2) |
|
12 Bayesian Diagnosis with Discrete Data |
|
|
209 | (12) |
|
|
209 | (1) |
|
|
210 | (3) |
|
|
213 | (3) |
|
|
216 | (1) |
|
|
217 | (2) |
|
12.6 Industrial-scale Case |
|
|
219 | (1) |
|
12.7 Notes and References |
|
|
220 | (1) |
|
|
220 | (1) |
|
13 Accounting for Autodependent Modes and Evidence |
|
|
221 | (11) |
|
|
221 | (1) |
|
|
222 | (6) |
|
13.2.1 Evidence Transition Probability |
|
|
222 | (4) |
|
13.2.2 Mode Transition Probability |
|
|
226 | (2) |
|
|
228 | (3) |
|
13.4 Notes and References |
|
|
231 | (1) |
|
|
231 | (1) |
|
14 Accounting for Incomplete Discrete Evidence |
|
|
232 | (15) |
|
|
232 | (1) |
|
|
232 | (6) |
|
14.2.1 Single Missing Pattern Problem |
|
|
232 | (4) |
|
14.2.2 Multiple Missing Pattern Problem |
|
|
236 | (2) |
|
|
238 | (3) |
|
|
241 | (1) |
|
|
242 | (2) |
|
14.6 Industrial-scale Case |
|
|
244 | (2) |
|
14.7 Notes and References |
|
|
246 | (1) |
|
|
246 | (1) |
|
15 Accounting for Ambiguous Modes in Historical Data: A Bayesian Approach |
|
|
247 | (25) |
|
|
247 | (1) |
|
|
248 | (6) |
|
15.2.1 Formulating the Problem |
|
|
248 | (1) |
|
15.2.2 Second-order Taylor Series Approximation of p(E|M, Θ) |
|
|
248 | (2) |
|
15.2.3 Second-order Bayesian Combination |
|
|
250 | (2) |
|
15.2.4 Optional Step: Separating Monitors into Independent Groups |
|
|
252 | (1) |
|
15.2.5 Grouping Methodology |
|
|
253 | (1) |
|
15.3 Illustrative Example of Proposed Methodology |
|
|
254 | (11) |
|
|
254 | (1) |
|
15.3.2 Offline Step 1: Historical Data Collection |
|
|
255 | (1) |
|
15.3.3 Offline Step 2: Mutual Information Criterion (Optional) |
|
|
255 | (1) |
|
15.3.4 Offline Step 3: Calculate Reference Values |
|
|
256 | (1) |
|
15.3.5 Online Step 1: Calculate Support |
|
|
257 | (1) |
|
15.3.6 Online Step 2: Calculate Second-order Terms |
|
|
258 | (2) |
|
15.3.7 Online Step 3: Perform Combinations |
|
|
260 | (2) |
|
15.3.8 Online Step 4: Make a Diagnosis |
|
|
262 | (3) |
|
|
265 | (3) |
|
|
268 | (1) |
|
15.6 Industrial-scale Case |
|
|
269 | (1) |
|
15.7 Notes and References |
|
|
270 | (1) |
|
|
271 | (1) |
|
16 Accounting for Ambiguous Modes in Historical Data: A Dempster—Shafer Approach |
|
|
272 | (16) |
|
|
272 | (1) |
|
|
272 | (4) |
|
16.2.1 Parametrized Likelihoods |
|
|
272 | (1) |
|
16.2.2 Basic Belief Assignments |
|
|
273 | (2) |
|
16.2.3 The Generalized Dempster's Rule of Combination |
|
|
275 | (1) |
|
16.3 Example of Proposed Methodology |
|
|
276 | (7) |
|
|
276 | (1) |
|
16.3.2 Offline Step 1: Historical Data Collection |
|
|
277 | (1) |
|
16.3.3 Offline Step 2: Mutual Information Criterion (Optional) |
|
|
277 | (1) |
|
16.3.4 Offline Step 3: Calculate Reference Value |
|
|
278 | (1) |
|
16.3.5 Online Step 1: Calculate Support |
|
|
279 | (1) |
|
16.3.6 Online Step 2: Calculate the GBBA |
|
|
280 | (3) |
|
16.3.7 Online Step 3: Combine BBAs and Diagnose |
|
|
283 | (1) |
|
|
283 | (1) |
|
|
284 | (2) |
|
|
286 | (1) |
|
16.7 Notes and References |
|
|
287 | (1) |
|
|
287 | (1) |
|
17 Making use of Continuous Evidence through Kernel Density Estimation |
|
|
288 | (25) |
|
|
288 | (1) |
|
|
289 | (4) |
|
17.2.1 Kernel Density Estimation |
|
|
289 | (1) |
|
17.2.2 Bandwidth Selection |
|
|
289 | (1) |
|
17.2.3 Adaptive Bandwidths |
|
|
290 | (1) |
|
17.2.4 Optional Step: Dimension Reduction by Multiplying Independent Likelihoods |
|
|
291 | (1) |
|
17.2.5 Optional Step: Creating Independence via Independent Component Analysis |
|
|
291 | (1) |
|
17.2.6 Optional Step: Replacing Missing Values |
|
|
292 | (1) |
|
17.3 Example of Proposed Methodology |
|
|
293 | (9) |
|
17.3.1 Offline Step 1: Historical Data Collection |
|
|
295 | (1) |
|
17.3.2 Offline Step 3: Mutual Information Criterion (Optional) |
|
|
296 | (2) |
|
17.3.3 Offline Step 4: Independent Component Analysis (Optional) |
|
|
298 | (1) |
|
17.3.4 Offline Step 5: Obtain Bandwidths |
|
|
298 | (3) |
|
17.3.5 Online Step 1: Calculate Likelihood of New Data |
|
|
301 | (1) |
|
17.3.6 Online Step 2: Calculate Posterior Probability |
|
|
302 | (1) |
|
17.3.7 Online Step 3: Make a Diagnosis |
|
|
302 | (1) |
|
|
302 | (2) |
|
|
304 | (1) |
|
17.6 Industrial-scale Case |
|
|
304 | (3) |
|
17.7 Notes and References |
|
|
307 | (1) |
|
|
307 | (1) |
|
|
308 | (5) |
|
17.A Code for Kernel Density Regression |
|
|
308 | (5) |
|
17.A.1 Kernel Density Regression |
|
|
308 | (2) |
|
17.A.2 Three-dimensional Matrix Toolbox |
|
|
310 | (3) |
|
18 Dynamic Application of Continuous Evidence and Ambiguous Mode Solutions |
|
|
313 | (16) |
|
|
313 | (1) |
|
18.2 Algorithm for Autodependent Modes |
|
|
313 | (3) |
|
18.2.1 Transition Probability Matrix |
|
|
314 | (1) |
|
18.2.2 Review of Second-order Method |
|
|
314 | (1) |
|
18.2.3 Second-order Probability Transition Rule |
|
|
315 | (1) |
|
18.3 Algorithm for Dynamic Continuous Evidence and Autodependent Modes |
|
|
316 | (4) |
|
18.3.1 Algorithm for Dynamic Continuous Evidence |
|
|
316 | (2) |
|
18.3.2 Combining both Solutions |
|
|
318 | (1) |
|
18.3.3 Comments on Usefulness |
|
|
319 | (1) |
|
18.4 Example of Proposed Methodology |
|
|
320 | (5) |
|
|
320 | (1) |
|
18.4.2 Offline Step 1: Historical Data Collection |
|
|
320 | (1) |
|
18.4.3 Offline Step 2: Create Temporal Data |
|
|
320 | (1) |
|
18.4.4 Offline Step 3: Mutual Information Criterion (Optional, but Recommended) |
|
|
321 | (1) |
|
18.4.5 Offline Step 5: Calculate Reference Values |
|
|
322 | (1) |
|
18.4.6 Online Step 1: Obtain Prior Second-order Terms |
|
|
322 | (1) |
|
18.4.7 Online Step 2: Calculate Support |
|
|
323 | (1) |
|
18.4.8 Online Step 3: Calculate Second-order Terms |
|
|
323 | (1) |
|
18.4.9 Online Step 4: Combining Prior and Likelihood Terms |
|
|
324 | (1) |
|
|
325 | (1) |
|
|
326 | (1) |
|
18.7 Industrial-scale Case |
|
|
326 | (1) |
|
18.8 Notes and References |
|
|
327 | (1) |
|
|
327 | (2) |
Index |
|
329 | |