Muutke küpsiste eelistusi

E-raamat: Process Imaging For Automatic Control

Edited by (University of Manchester, UK), Edited by (Advanced Particle Sensors LLC, Delaware, USA)
  • Formaat - EPUB+DRM
  • Hind: 279,50 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Raamatukogudele

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

As industrial processes and their corresponding control models increase in complexity, the data provided by traditional point sensors is no longer adequate to ensure product quality and cost-effective operation. Process Imaging for Automatic Control demonstrates how in-process imaging technologies surpass the limitations of traditional monitoring systems by providing real-time multidimensional measurement and control data. Combined with suitable data extraction and control schemes, such systems can optimize the performance of a wide variety of industrial processes.

Contributed by leading international experts, Process Imaging for Automatic Control offers authoritative, comprehensive coverage of this new area of process control technology, including:

Basic goals of process modeling and their application to automatic control

Direct imaging devices and applications, such as machine vision and spatial measurement of flow velocity, pressure, shear, pH, and temperature

Various techniques, hardware implementations, and image reconstruction methods for process tomography

Image enhancement and restoration

State estimation methods

State space control system models, control strategies, and implementation issues

Five chapters devoted to case studies and advanced applications

From theory to practical implementation, this book is the first to treat the entire range of imaging techniques and their application to process control. Supplying broad coverage with more than 270 illustrations and nearly 700 cited references, it presents an accessible introduction to this rapidly growing, interdisciplinary technology.
The Challenge
1(8)
David M. Scott
Hugh McCann
Motivation
1(2)
Road Map
3(5)
Vista
8(1)
Process Modeling
9(26)
Patrick Linke
Antonis Kokossis
Jens-Uwe Repke
Gunter Wozny
Introduction
9(2)
Simulation vs. Optimization
11(1)
Process Models for Imaging and Analysis
12(4)
Fluid Flow and Mixing Models
12(2)
Data- and Image-Driven Models
14(2)
Process Modeling for Design, Control, and Diagnostics
16(19)
Defining the Model
16(4)
Detailed Models
20(2)
Start-Up and Shut-Down
22(6)
Control and Optimization
28(2)
References
30(5)
Direct Imaging Technology
35(50)
Satoshi Someya
Masahiro Takei
Introduction
36(1)
Light Sources
36(7)
Lasers
36(1)
Overview
36(2)
Helium-Neon Lasers
38(1)
Argon-Ion and Krypton-Ion Lasers
39(1)
Helium-Cadmium Lasers
40(1)
Neodymium Lasers
40(1)
White Light Sources
41(2)
Sensors
43(17)
Visible Image Sensors
43(1)
Basic Properties
43(2)
Color
45(2)
Differences between CCD and CMOS Sensors
47(1)
Architectures
47(3)
Image Intensifiers
50(1)
Basic Principles
50(1)
Image Intensifier Designs
51(1)
Gated Intensifiers
52(1)
Intensified CCDs
53(2)
X-Ray Image Intensifiers
55(1)
Thermal Sensors
55(1)
Pyrometers
55(1)
Detector Elements for Infrared Light
56(1)
Thermal Cameras
57(1)
Thermochromic Liquid Crystals
58(1)
Fiber Optic Thermometers
59(1)
Optical Components
60(8)
Glass Materials for Optics
60(2)
Basic Optical Elements
62(1)
Lens Design
62(2)
Source Optics
64(3)
Optical Fiber
67(1)
Applications
68(13)
Particle Imaging Velocimetry
68(2)
Pressure Measurements
70(2)
Measurement of pH and Temperature by Fluorescence
72(1)
Dependency on pH and Temperature
73(1)
Spectral Conflicts
74(1)
Measurement Example
75(2)
Micro Shear-Stress Imaging Chip
77(1)
Basic Structure and Calibration
77(2)
Measurement Example
79(2)
Machine Vision
81(4)
References
83(2)
Process Tomography
85(42)
Brian S. Hoyle
Hugh McCann
David M. Scott
Introduction
85(12)
Tomography and Tomographic Reconstruction
86(2)
Background on Tomography
88(3)
Links with Medical Tomography
91(1)
Historical Developments in Process Tomography
92(5)
Tomographic Sensor Modalities
97(11)
Introduction
97(1)
CT and Gamma-Ray Tomography
97(1)
Electrical Modalities
98(1)
Microwave Tomography
99(1)
Optical Modalities
100(2)
Acoustic and Ultrasonic Methods
102(3)
Other Modalities Borrowed from Medicine
105(1)
Magnetic Resonance Imaging
105(1)
Positron Emission Tomography
106(1)
Multimodal Systems
107(1)
Image Reconstruction
108(7)
Backprojection
110(2)
Transform Methods
112(1)
Iterative Methods
112(2)
Model-Based Reconstruction
114(1)
Heuristic and Neural Net Methods
114(1)
Current Tomography Systems
115(4)
Current Status
115(1)
Commercial Instruments
116(3)
Applications
119(8)
References
119(8)
Image Processing and Feature Extraction
127(80)
Dongming Zhao
Introduction
128(2)
Image Enhancement
130(16)
Basic Gray-Level Transformations
130(1)
Image Negation
131(1)
Log Transformations
131(1)
Power-Law Transformation
132(1)
Histogram Processing
133(4)
Spatial Filters
137(1)
Smoothing
137(4)
Sharpening
141(3)
Frequency Domain Processing
144(2)
Image Restoration
146(9)
Types of Noise
146(4)
Spatial Filtering
150(1)
Mean Filters
150(1)
Median Filters
151(1)
Other Filters
151(1)
Frequency Domain Filtering
152(1)
Bandreject Filters
152(1)
Bandpass Filters
152(2)
Notch Filters
154(1)
Segmentation
155(13)
Edge Detection
155(1)
Hough Transform
156(1)
Line Detection
156(2)
Parameter Space and Image Space
158(1)
Generalized Hough Transform
159(2)
Thresholding
161(1)
Edge Linking
162(1)
Curve Fitting
162(3)
Roberts Method
165(1)
Segment Labeling
166(2)
Feature Representation
168(14)
Chain Code
168(2)
Fourier Descriptor
170(4)
Moments
174(2)
Shape Features and Representation
176(1)
Geometry Features
176(2)
Moment-Based Features
178(2)
Skeletons
180(2)
Morphological Image Processing and Analysis
182(25)
Morphological Transformations of Binary Images
182(1)
Morphological Set Transformations
182(1)
Minkowski's Addition
183(1)
Minkowski's Subtraction
183(1)
Dilation
183(1)
Erosion
184(6)
Morphological Transformations of Grayscale Images
190(2)
Hit-or-Miss Transformation
192(3)
Morphological Skeletons
195(1)
Watersheds
196(1)
Applications of Morphological Processing
197(1)
Image Processing and Analysis
198(2)
Pattern Analysis
200(1)
Biomedical and Medical Imaging
201(1)
Texture Analysis
201(1)
Machine Vision and Inspection
201(1)
Conclusion
201(1)
References
202(5)
State Estimation
207(30)
Jari P. Kaipio
Stephen Duncan
Aku Seppanen
Erkki Somersalo
Arto Voutilainen
Introduction
207(4)
State Space Representation of Dynamical Systems
208(2)
Applications to Imaging and Control
210(1)
Real-Time Recursive Estimation: Kalman Predictors and Filters
211(2)
On-Line and Transient Estimation: Smoothers
213(2)
Nonlinear and Non-Gaussian State Estimation
215(4)
Extended Kalman Filters
215(2)
Sampling and Particle Filters
217(2)
Partially Unknown Models: Parameter Estimation
219(2)
Batch-Type Optimization: Time-Invariant Parameters
220(1)
Augmented State Models: Time-Varying Parameters
220(1)
Further Topics
221(5)
General Modeling Issues and Inverse Problems
221(2)
Construction of the Finite Dimensional Discrete-Time Evolution Model
223(2)
Higher Order Evolution Models
225(1)
Stability and Computational Issues
225(1)
Observation and Evolution Models in the Process Industry
226(1)
Observation Modalities
226(1)
Evolution Models
226(1)
Example: Convection--Diffusion Models
226(11)
Impedance Tomography and the Measurement Model
228(1)
Convection-Diffusion Model
229(1)
Example 1: Known Velocity Field
230(2)
Example 2: Unknown Rate of Flow
232(1)
References
232(5)
Control Systems
237(26)
Stephen Duncan
Jari P. Kaipio
Anna R. Ruuskanen
Matti Malinen
Aku Seppanen
Introduction
237(3)
Modelling the Process
240(2)
Feedback Control
242(4)
Control Design
246(11)
Controllability and Observability
246(3)
Linear Quadratic Gaussian Control
249(3)
H∞ Control
252(5)
Practicalities of Implementing Controllers
257(3)
Robustness
257(2)
Actuator Constraints
259(1)
Computer-Based Implementation
259(1)
Conclusion
260(3)
References
260(3)
Imaging Diagnostics for Combustion Control
263(36)
Volker Sick
Hugh McCann
Introduction
263(2)
Combustor Types
265(6)
Internal Combustion Engines
267(3)
Turbines
270(1)
Solid Fuel Burners
270(1)
Imaging in Combustors
271(6)
Concepts
271(1)
Sensing Principles
271(2)
Sensing Techniques
273(3)
Enabling Technology
276(1)
Results from Combustor Imaging
277(14)
Engines
277(13)
Turbines
290(1)
Waste Incinerators
291(1)
Conclusions
291(8)
References
292(7)
Multiphase Flow Measurements
299(34)
Tomasz Dyakowski
Artur J. Jaworski
Introduction
299(1)
Flow Pattern Recognition
300(9)
A Priori Knowledge Approach
301(6)
Statistical Approach
307(2)
Flow Pattern Imaging
309(12)
2D Instantaneous and Average Phase Distribution
309(8)
3D Macro-Flow Structures
317(4)
Solids Mass Flow Measurements
321(12)
References
330(3)
Applications in the Chemical Process Industry
333(26)
David M. Scott
Introduction
333(2)
Applications Related to Process Control
335(15)
Polymer Melt Extrusion
335(3)
Pneumatic Conveying
338(2)
Granulation
340(3)
Crystallization
343(1)
Particle Morphology
344(2)
Compounding of Reinforced Polymers
346(4)
Applications Related to Process and Product R&D
350(6)
Polymerization Monitoring
350(2)
Media Milling
352(4)
Conclusion
356(3)
References
356(3)
Mineral and Material Processing
359(42)
Richard A. Williams
Motivation for Development of Image-Based Techniques
359(2)
Design of Comminution Equipment
361(6)
External High-Speed Video Imaging of Bead Movement
362(3)
Internal Bead Tracking Using Positron Emission Particle Tracking
365(2)
Granular Flow and Bulk Transportation
367(9)
Pipeline Conveying
367(7)
Belt Conveying
374(2)
Particle Classification in Cyclones
376(9)
Hydrocyclones
378(5)
De-Oiling Cyclones
383(2)
Performance of Flotation Cells and Columns
385(5)
EIT Analysis of Bubble Columns and Foams
385(1)
Direct Imaging of Flotation Foams
386(4)
Solids Settling and Water Recovery
390(3)
Microscale Analysis of Granules, Flocs, and Sediments
393(4)
Concluding Remarks
397(4)
References
397(4)
Applications in the Metals Production Industry
401(34)
James A. Coveney
Neil B. Gray
Andrew K. Kyllo
Introduction
401(2)
Detection of Slag Entrainment
403(5)
Infrared Detection
404(1)
Electromagnetic Detection
405(2)
Vibrational Detection
407(1)
Comparison of Techniques
407(1)
Measurement of Furnace Refractory Wear
408(7)
Thermal Imaging
408(3)
Ultrasonic Inspection
411(3)
Laser Furnace Inspection
414(1)
Comparison of Techniques
415(1)
Flow Measurement
415(9)
Monitoring of Flow Regimes in the Continuous Caster
416(4)
Electromagnetic Monitoring of Flow through Tapholes
420(1)
Imaging of Flow in Ladle Stirring
421(3)
Imaging Solid State Phase Change
424(5)
Infrared Pyrometry
426(1)
Electromagnetic Imaging
426(3)
Conclusion
429(6)
References
429(6)
Index 435


David M. Scott, Hugh McCann