Muutke küpsiste eelistusi

E-raamat: Process Intensification: Engineering for Efficiency, Sustainability and Flexibility

(Emeritus Professor of Chemical Engineering, Newcastle University, UK), , (Manager, David Reay and Associates; Visiting Professor, Northumbria University; Researcher, Newcastle University; Honorary Professor at Nottingham University, UK)
Teised raamatud teemal:
  • Formaat - EPUB+DRM
  • Hind: 116,09 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Process intensification (PI) is a chemical and process design approach that leads to substantially smaller, cleaner, safer and more energy efficient process technology. A hot topic across the chemical and process industries, this is the first book to provide a practical working guide to understanding and developing successful PI solutions that deliver savings and efficiencies. It will appeal to engineers working with leading-edge process technologies, and those involved research and development of chemical, process, environmental, pharmaceutical, and bioscience systems.

  • No other comprehensive reference is available on this hot topic or offers the practical tools to reach out to a wide base of professional and academic engineers who are engaged in systematically addressing efficiency of chemical reaction engineering in a cost-effective manner.
  • Covers hot and high growth topics, including emission prevention, sustainable design, and pinch analysis
  • World class authors: Colin Ramshaw pioneered PI at ICI and is widely credited as the father of the technology.


Process Intensification: Engineering for Efficiency, Sustainability and Flexibility is the first book to provide a practical working guide to understanding process intensification (PI) and developing successful PI solutions and applications in chemical process, civil, environmental, energy, pharmaceutical, biological, and biochemical systems.

Process intensification is a chemical and process design approach that leads to substantially smaller, cleaner, safer, and more energy efficient process technology. It improves process flexibility, product quality, speed to market and inherent safety, with a reduced environmental footprint.

This book represents a valuable resource for engineers working with leading-edge process technologies, and those involved research and development of chemical, process, environmental, pharmaceutical, and bioscience systems.

  • No other reference covers both the technology and application of PI, addressing fundamentals, industry applications, and including a development and implementation guide
  • Covers hot and high growth topics, including emission prevention, sustainable design, and pinch analysis
  • World-class authors: Colin Ramshaw pioneered PI at ICI and is widely credited as the father of the technology

Muu info

World class advice and guidance that engineers need to understand, develop and benefit from process intensification in their field
Foreword xv
Preface xvii
Acknowledgements xix
Introduction xxvii
Chapter 1 A Brief History of Process Intensification
1(26)
1.1 Introduction
1(1)
1.2 Rotating boilers
2(4)
1.2.1 The rotating boiler/turbine concept
2(1)
1.2.2 NASA work on rotating boilers
3(3)
1.3 The rotating heat pipe
6(2)
1.3.1 Rotating air conditioning unit
7(1)
1.4 The chemical process industry - the process intensification breakthrough at ICI
8(4)
1.5 Separators
12(2)
1.5.1 The Podbielniak extractor
12(2)
1.5.2 Centrifugal evaporators
14(1)
1.5.3 The still of John Moss
14(1)
1.5.4 Extraction research in Bulgaria
14(1)
1.6 Reactors
14(5)
1.6.1 Catalytic plate reactors
16(1)
1.6.2 Polymerisation reactors
16(1)
1.6.3 Rotating fluidised bed reactor
17(1)
1.6.4 Reactors for space experiments
17(1)
1.6.5 Towards perfect reactors
17(2)
1.7 Non-chemical industry-related applications of rotating heat and mass transfer
19(2)
1.7.1 Rotating heat transfer devices
19(2)
1.8 Where are we today?
21(2)
1.8.1 Clean technologies
21(1)
1.8.2 Integration of process intensification and renewable energies
21(1)
1.8.3 PI and carbon capture
22(1)
1.9 Summary
23(4)
References
23(4)
Chapter 2 Process Intensification - An Overview
27(30)
2.1 Introduction
27(1)
2.2 What is process intensification?
28(1)
2.3 The original ICI PI strategy
29(4)
2.4 The advantages of PI
33(13)
2.4.1 Safety
33(2)
2.4.2 The environment
35(2)
2.4.3 Energy
37(6)
2.4.4 The business process
43(3)
2.5 Some obstacles to PI
46(1)
2.6 A way forward
47(1)
2.7 To whet the reader's appetite
48(1)
2.8 Equipment summary - finding your way around this book
49(5)
2.9 Summary
54(3)
References
54(3)
Chapter 3 The Mechanisms Involved in Process Intensification
57(34)
3.1 Introduction
57(2)
3.2 Intensified heat transfer - the mechanisms involved
59(16)
3.2.1 Classification of enhancement techniques
61(1)
3.2.2 Passive enhancement techniques
62(7)
3.2.3 Active enhancement methods
69(5)
3.2.4 System impact of enhancement/intensification
74(1)
3.3 Intensified mass transfer - the mechanisms involved
75(2)
3.3.1 Rotation
75(1)
3.3.2 Vibration
76(1)
3.3.3 Mixing
76(1)
3.4 Electrically enhanced processes - the mechanisms
77(5)
3.5 Micro fluidics
82(4)
3.5.1 Electrokinetics
83(1)
3.5.2 Magnetohydrodynamics (MHD)
83(2)
3.5.3 Opto-micro-fluidics
85(1)
3.6 Pressure
86(1)
3.7 Summary
87(4)
References
87(4)
Chapter 4 Compact and Micro-heat Exchangers
91(30)
4.1 Introduction
91(2)
4.2 Compact heat exchangers
93(17)
4.2.1 The plate heat exchanger
96(1)
4.2.2 Printed circuit heat exchangers (PCHE)
97(4)
4.2.3 The Chart-flo heat exchanger
101(2)
4.2.4 Polymer film heat exchanger
103(2)
4.2.5 Foam heat exchangers
105(3)
4.2.6 Mesh heat exchangers
108(2)
4.3 Micro-heat exchangers
110(3)
4.4 What about small channels?
113(4)
4.5 Nano-fluids
117(1)
4.6 Summary
118(3)
References
118(3)
Chapter 5 Reactors
121(84)
5.1 Reactor engineering theory
121(6)
5.1.1 Reaction kinetics
122(1)
5.1.2 Residence time distributions (RTDs)
123(1)
5.1.3 Heat and mass transfer in reactors
124(3)
5.2 Spinning disc reactors
127(19)
5.2.1 Exploitation of centrifugal fields
127(1)
5.2.2 The desktop continuous process
128(1)
5.2.3 The spinning disc reactor
129(1)
5.2.4 The Nusselt flow model
129(2)
5.2.5 Mass transfer
131(2)
5.2.6 Heat transfer
133(3)
5.2.7 Film-flow instability
136(1)
5.2.8 Film-flow studies
136(1)
5.2.9 Heat/mass transfer performance
137(7)
5.2.10 Spinning disc reactor applications
144(2)
5.3 Other rotating reactors
146(4)
5.3.1 Rotor stator reactors: the STT reactor
146(1)
5.3.2 Taylor-Couette reactor
147(2)
5.3.3 Rotating packed-bed reactors
149(1)
5.4 Oscillatory baffled reactors (OBRs)
150(10)
5.4.1 Gas-liquid systems
152(1)
5.4.2 Liquid-liquid systems
153(1)
5.4.3 Heat transfer
154(1)
5.4.4 OBR design
154(2)
5.4.5 Biological applications
156(1)
5.4.6 Solids suspension
157(1)
5.4.7 Crystallisation
157(1)
5.4.8 Oscillatory mesoreactors: scaling OBRs down
158(1)
5.4.9 Case study
159(1)
5.5 Micro-reactors (including HEX-reactors)
160(19)
5.5.1 The catalytic plate reactor (CPR)
162(4)
5.5.2 HEX-reactors
166(8)
5.5.3 The corning micro-structured reactor
174(2)
5.5.4 Constant power reactors
176(3)
5.6 Field-enhanced reactions/reactors
179(3)
5.6.1 Induction-heated reactor
179(1)
5.6.2 Sonochemical reactors
179(2)
5.6.3 Microwave enhancement
181(1)
5.6.4 Plasma reactors
182(1)
5.6.5 Laser-induced reactions
182(1)
5.7 Reactive separations
182(5)
5.7.1 Reactive distillation
184(1)
5.7.2 Reactive extraction
185(1)
5.7.3 Reactive adsorption
186(1)
5.8 Membrane reactors
187(2)
5.8.1 Tubular membrane reactor
187(1)
5.8.2 Membrane slurry reactor
187(2)
5.8.3 Biological applications of membrane reactors
189(1)
5.9 Supercritical operation
189(2)
5.9.1 Applications
190(1)
5.10 Miscellaneous intensified reactor types
191(8)
5.10.1 The Torbed reactor
191(7)
5.10.2 Catalytic reactive extruders
198(1)
5.10.3 Heat pipe reactors
198(1)
5.11 Summary
199(6)
References
200(5)
Chapter 6 Intensification of Separation Processes
205(46)
6.1 Introduction
205(1)
6.2 Distillation
206(15)
6.2.1 Distillation - dividing wall columns
206(2)
6.2.2 Compact heat exchangers inside the column
208(1)
6.2.3 Cyclic distillation systems
209(1)
6.2.4 HiGee
210(11)
6.3 Centrifuges
221(2)
6.3.1 Conventional types
222(1)
6.3.2 The gas centrifuge
223(1)
6.4 Membranes
223(2)
6.5 Drying
225(3)
6.5.1 Electric drying and dewatering methods
226(1)
6.5.2 Membranes for dehydration
227(1)
6.6 Precipitation and crystallisation
228(3)
6.6.1 The environment for particle formation
228(1)
6.6.2 The spinning cone
229(1)
6.6.3 Electric fields to aid crystallisation of thin films
230(1)
6.7 Mop fan/deduster
231(4)
6.7.1 Description of the equipment
231(1)
6.7.2 Capture mechanism/efficiency
231(3)
6.7.3 Applications
234(1)
6.8 Electrolysis
235(12)
6.8.1 Introduction
235(1)
6.8.2 The effect of microgravity
236(1)
6.8.3 The effect of high gravity
237(1)
6.8.4 Current supply
238(1)
6.8.5 Rotary electrolysis cell design
239(2)
6.8.6 The static cell tests
241(3)
6.8.7 The rotary cell experiments
244(3)
6.9 Summary
247(4)
References
247(4)
Chapter 7 Intensified Mixing
251(8)
7.1 Introduction
251(1)
7.2 Inline mixers
252(5)
7.2.1 Static mixers
252(3)
7.2.2 Ejectors
255(1)
7.2.3 Rotor stator mixers
256(1)
7.3 Mixing on a spinning disc
257(1)
7.4 Induction-heated mixer
257(1)
7.5 Summary
257(2)
References
257(2)
Chapter 8 Application Areas - Petrochemicals and Fine Chemicals
259(64)
8.1 Introduction
259(1)
8.2 Refineries
260(2)
8.2.1 Catalytic plate reactor opportunities
261(1)
8.2.2 More speculative opportunities
262(1)
8.3 Bulk chemicals
262(26)
8.3.1 Stripping and gas clean-up
263(4)
8.3.2 Intensified methane reforming
267(2)
8.3.3 The hydrocarbon chain
269(1)
8.3.4 Reactive distillations for methyl and ethyl acetate
270(1)
8.3.5 Formaldehyde from methanol using micro-reactors
270(2)
8.3.6 Hydrogen peroxide production - the Degussa PI route
272(1)
8.3.7 Olefin hydroformylation - use of a HEX-reactor
272(2)
8.3.8 Polymerisation - the use of spinning disc reactors
274(3)
8.3.9 Akzo Nobel Chemicals - reactive distillation
277(1)
8.3.10 The gas turbine reactor - a challenge for bulk chemical manufacture
277(10)
8.3.11 Other bulk chemical applications in the literature
287(1)
8.4 Fine chemicals and pharmaceuticals
288(12)
8.4.1 Penicillin extraction
288(2)
8.4.2 AstraZeneca work on continuous reactors
290(1)
8.4.3 Micro-reactor for barium sulphate production
290(1)
8.4.4 Spinning disc reactor for barium carbonate production
290(2)
8.4.5 Spinning disc reactor for producing a drug intermediate
292(2)
8.4.6 SDR in the fragrance industry
294(2)
8.4.7 A continuous flow microwave reactor for production
296(1)
8.4.8 Ultrasound and the intensification of micro-encapsulation
296(2)
8.4.9 Powder coating technology - Akzo Nobel powder coatings Ltd
298(1)
8.4.10 Chiral amines - scaling up in the Coflore flow reactor
298(2)
8.4.11 Plant-wide PI in pharmaceuticals
300(1)
8.5 Bioprocessing or processing of bioderived feedstock
300(2)
8.5.1 Transesterification of vegetable oils
300(1)
8.5.2 Bioethanol to ethylene in a micro-reactor
300(1)
8.5.3 Base chemicals produced from biomass
301(1)
8.6 Intensified carbon capture
302(13)
8.6.1 Introduction
302(1)
8.6.2 Carbon capture methods
302(2)
8.6.3 Intensification of post-combustion carbon capture
304(8)
8.6.4 Intensification of carbon capture using other techniques
312(3)
8.7 Further reading
315(2)
8.8 Summary
317(6)
References
317(6)
Chapter 9 Application Areas - Offshore Processing
323(26)
9.1 Introduction
323(1)
9.2 Some offshore scenarios
324(4)
9.2.1 A view from BP a decade ago
324(1)
9.2.2 More recent observations - those of ConocoPhillips
324(3)
9.2.3 One 2007 scenario
327(1)
9.3 Offshore on platforms or subsea
328(12)
9.3.1 Setting the scene
328(1)
9.3.2 Down hole heavy crude oil processing
329(1)
9.3.3 Compact heat exchangers offshore (and onshore)
329(2)
9.3.4 Extending the PCHE concept to reactors
331(1)
9.3.5 HiGee for enhanced oil recovery - surfactant synthesis
332(1)
9.3.6 Deoxygenation using high gravity fields
333(7)
9.3.7 RF heating to recover oil from shale
340(1)
9.4 Floating production, storage and offloading systems (FPSO) activities
340(5)
9.5 Safety offshore - can PI help?
345(1)
9.6 Summary
346(3)
References
346(3)
Chapter 10 Application Areas - Miscellaneous Process Industries
349(44)
10.1 Introduction
349(1)
10.2 The nuclear industry
349(6)
10.2.1 Highly compact heat exchangers for reactors
350(2)
10.2.2 Nuclear reprocessing
352(1)
10.2.3 Uranium enrichment by centrifuge
352(3)
10.3 The food and drink sector
355(16)
10.3.1 Barrier to PI
357(1)
10.3.2 Sector characteristics
357(1)
10.3.3 Induction-heated mixers
358(1)
10.3.4 Electric fields for drying and cooking
358(1)
10.3.5 Spinning discs in the food sector
359(5)
10.3.6 Deaeration systems for beverage packaging
364(3)
10.3.7 Intensified refrigeration
367(1)
10.3.8 Pursuit dynamics intensified mixing
368(1)
10.3.9 The Torbed reactor in food processing
369(2)
10.4 Textiles
371(4)
10.4.1 Textile preparation
371(1)
10.4.2 Textile finishing
371(1)
10.4.3 Textile effluent treatment
372(1)
10.4.4 Laundry processes
373(2)
10.4.5 Leather production
375(1)
10.5 The metallurgical and glass industries
375(5)
10.5.1 The metallurgical sector
375(3)
10.5.2 The glass and ceramics industry
378(2)
10.6 Aerospace
380(1)
10.7 Biotechnology
381(8)
10.7.1 Biodiesel production
382(2)
10.7.2 Waste/effluent treatment
384(5)
10.8 Summary
389(4)
References
389(4)
Chapter 11 Application Areas - the Built Environment, Electronics, and the Home
393(44)
11.1 Introduction
393(1)
11.2 Refrigeration/heat pumping
394(17)
11.2.1 The Rotex chiller/heat pump
395(4)
11.2.2 Compact heat exchangers in heat pumps
399(5)
11.2.3 Micro-refrigerator for chip cooling
404(2)
11.2.4 Absorption and adsorption cycles
406(5)
11.3 Power generation
411(7)
11.3.1 Miniature fuel cells
411(3)
11.3.2 Micro turbines
414(1)
11.3.3 Batteries
414(3)
11.3.4 Pumps
417(1)
11.3.5 Energy scavenging
417(1)
11.4 Microelectronics
418(14)
11.4.1 Micro-fluidics
419(3)
11.4.2 Micro-heat pipes - electronics thermal control
422(10)
11.5 Summary
432(5)
References
432(5)
Chapter 12 Specifying, Manufacturing and Operating PI Plant
437(144)
12.1 Introduction
437(1)
12.2 Various approaches to adopting PI
438(4)
12.2.1 Process integration
439(1)
12.2.2 Britest process innovation
440(1)
12.2.3 Process analysis and development - a German approach
441(1)
12.3 Initial assessment
442(5)
12.3.1 Know your current process
442(3)
12.3.2 Identify process limiting factors
445(2)
12.3.3 Some key questions to address
447(1)
12.4 Equipment specification
447(7)
12.4.1 Concerns about fouling
449(1)
12.4.2 Factors affecting control and their relevance to PI plant
450(4)
12.4.3 Try it out!
454(1)
12.5 Installation features of PI plant
454(1)
12.6 Pointers to the successful operation of PI plant
454(2)
12.7 The systematic approach to selecting PI technology
456(5)
12.7.1 A process intensification methodology
456(5)
12.8 The ultimate goal - whole plant intensification
461(2)
12.9 Learning from experience
463(1)
12.10 Summary
464(79)
References
464(2)
Appendix: Applications of the PI Methodology
466(1)
12.11.1 Case Studies 1-4
467(76)
Appendix 1 Abbreviations Used
543(2)
Appendix 2 Nomenclature
545(2)
Appendix 3 Equipment Suppliers
547(16)
Appendix 4 R&D Organisations, Consultants and Miscellaneous Groups Active in PI
563(14)
Appendix 5 A Selection of Other Useful Contact Points, Including Networks and Websites
577(4)
Index 581
Professor Reay manages David Reay & Associates, UK, and he is a Visiting Professor at Northumbria University, Emeritus Professor at Newcastle University, and Honorary Professor Brunel University London, UK. His main research interests are compact heat exchangers, process intensification, and heat pumps. He is also Editor-in-Chief of Thermal Science and Engineering Progress and Associate Editor of the International Journal of Thermofluids, both are published by Elsevier. Prof. Reay is the Author/Co-author of eight other books. Colin Ramshaw conceived and developed the concept of Process Intensification in the 1980s while working for ICI. He pioneered further aspects of PI after being appointed to the Chair of Chemical Engineering at Newcastle University. He is now a Visiting Professor at Cranfield University