|
|
1 | (32) |
|
1.1 A Short Introduction to R |
|
|
1 | (9) |
|
|
1 | (1) |
|
|
2 | (1) |
|
1.1.3 Sequences, Replications, and Loops |
|
|
3 | (1) |
|
|
4 | (2) |
|
1.1.5 Reading and Storing Data Files |
|
|
6 | (1) |
|
1.1.6 Probability Distributions |
|
|
7 | (1) |
|
|
8 | (1) |
|
|
9 | (1) |
|
1.2 Testing Linear Restrictions |
|
|
10 | (5) |
|
1.3 Maximum Likelihood Estimation |
|
|
15 | (7) |
|
1.3.1 The Basic Idea of Maximum Likelihood Estimation |
|
|
15 | (1) |
|
1.3.2 The Exponential Distribution |
|
|
15 | (3) |
|
1.3.3 Properties of ml-Estimators |
|
|
18 | (4) |
|
1.4 Numerical Optimization |
|
|
22 | (8) |
|
1.4.1 The General Form of Algorithms |
|
|
22 | (1) |
|
1.4.2 The Newton--Raphson Algorithm |
|
|
23 | (1) |
|
1.4.3 Two Simple Examples |
|
|
24 | (6) |
|
|
30 | (1) |
|
|
30 | (3) |
|
|
32 | (1) |
|
2 Linear Production Model |
|
|
33 | (24) |
|
2.1 The Theoretical Linear Production Model |
|
|
33 | (8) |
|
2.1.1 Industries and Goods |
|
|
33 | (2) |
|
2.1.2 Direct and Indirect Inputs |
|
|
35 | (1) |
|
2.1.3 The Employment Model |
|
|
36 | (2) |
|
2.1.4 A Numerical Example with R |
|
|
38 | (3) |
|
|
41 | (3) |
|
2.2.1 Aggregated Tables for Germany |
|
|
41 | (1) |
|
|
42 | (2) |
|
2.3 Analyzing German Input--Output Tables 1991 and 2007 |
|
|
44 | (11) |
|
2.3.1 Handling Input--Output Tables |
|
|
44 | (2) |
|
2.3.2 Some Empirical Results |
|
|
46 | (9) |
|
|
55 | (1) |
|
|
56 | (1) |
|
|
56 | (1) |
|
|
57 | (26) |
|
|
57 | (2) |
|
3.2 The Cobb--Douglas Function |
|
|
59 | (3) |
|
3.2.1 Properties of the Function |
|
|
59 | (1) |
|
3.2.2 Estimating the CD with R |
|
|
60 | (2) |
|
3.3 The Constant Elasticity of Substitution Function |
|
|
62 | (9) |
|
3.3.1 Properties of the Function |
|
|
63 | (3) |
|
3.3.2 Estimating the CES with R |
|
|
66 | (5) |
|
3.4 The Transcendental Logarithmic Production Function |
|
|
71 | (8) |
|
3.4.1 Properties of the Function |
|
|
72 | (3) |
|
3.4.2 Estimating the TL with R |
|
|
75 | (4) |
|
|
79 | (1) |
|
|
80 | (3) |
|
|
81 | (2) |
|
4 Production Functions with Panel Data |
|
|
83 | (30) |
|
|
83 | (1) |
|
4.2 Introduction to Panel Data |
|
|
84 | (11) |
|
4.2.1 Unrestricted and Restricted Models |
|
|
84 | (1) |
|
4.2.2 Pooled, Within, Between |
|
|
85 | (2) |
|
|
87 | (7) |
|
|
94 | (1) |
|
4.3 Panel Data Analysis with R |
|
|
95 | (13) |
|
4.3.1 Generating a Panel Data Set |
|
|
95 | (3) |
|
4.3.2 Some Transformations with Panel Data |
|
|
98 | (1) |
|
4.3.3 Estimating Panel Data Models Using the plm Package |
|
|
99 | (5) |
|
4.3.4 Dynamic Panel Data Models |
|
|
104 | (4) |
|
|
108 | (1) |
|
|
109 | (4) |
|
|
111 | (2) |
|
|
113 | (22) |
|
|
113 | (7) |
|
|
113 | (3) |
|
5.1.2 Profit Maximization |
|
|
116 | (1) |
|
|
117 | (1) |
|
|
118 | (1) |
|
5.1.5 Slacks and Surpluses |
|
|
119 | (1) |
|
|
120 | (9) |
|
|
120 | (2) |
|
|
122 | (3) |
|
|
125 | (2) |
|
|
127 | (2) |
|
5.3 Solving the Simplex Using R |
|
|
129 | (3) |
|
5.3.1 The Setup of Simplex Tableaus |
|
|
129 | (1) |
|
5.3.2 Solving Some Examples |
|
|
129 | (3) |
|
|
132 | (1) |
|
|
133 | (2) |
|
|
134 | (1) |
|
6 Data Envelopment Analysis |
|
|
135 | (26) |
|
|
135 | (6) |
|
6.1.1 Productivity and Efficiency |
|
|
135 | (1) |
|
6.1.2 One Input--One Output |
|
|
136 | (1) |
|
6.1.3 Two Inputs--One Output |
|
|
137 | (1) |
|
6.1.4 One Input--Two Outputs |
|
|
138 | (2) |
|
6.1.5 Fixed and Variable Weights |
|
|
140 | (1) |
|
6.2 Charnes--Cooper--Rhodes-Model |
|
|
141 | (10) |
|
|
141 | (1) |
|
6.2.2 Programming Problem |
|
|
142 | (1) |
|
|
143 | (1) |
|
6.2.4 Production Correspondence |
|
|
144 | (4) |
|
6.2.5 Output-Oriented Model |
|
|
148 | (1) |
|
6.2.6 Returns to Scale in DEA Models |
|
|
149 | (2) |
|
6.3 Data Envelopment Analysis with R |
|
|
151 | (6) |
|
6.3.1 Benchmarking Package |
|
|
151 | (1) |
|
|
151 | (6) |
|
|
157 | (1) |
|
|
158 | (3) |
|
|
159 | (2) |
|
7 Stochastic Data Envelopment Analysis |
|
|
161 | (22) |
|
|
161 | (1) |
|
7.2 Population and Simple Random Samples |
|
|
162 | (2) |
|
|
164 | (3) |
|
|
167 | (4) |
|
7.5 DEA and the Naive Bootstrap |
|
|
171 | (5) |
|
|
171 | (1) |
|
7.5.2 Bootstrap Estimation Based on a Specific Sample |
|
|
172 | (3) |
|
7.5.3 Bootstrap Estimation Based on All Samples |
|
|
175 | (1) |
|
7.6 The Simar--Wilson Approach |
|
|
176 | (5) |
|
7.6.1 Strongly Simplified Algorithm |
|
|
176 | (2) |
|
7.6.2 The Simar--Wilson Algorithm |
|
|
178 | (3) |
|
|
181 | (1) |
|
|
181 | (2) |
|
|
182 | (1) |
|
8 Stochastic Frontier Analysis |
|
|
183 | (20) |
|
|
183 | (1) |
|
8.2 Production and Inefficiency |
|
|
183 | (8) |
|
8.2.1 Observed and Efficient Production |
|
|
184 | (1) |
|
8.2.2 Production Frontier and Deviations |
|
|
184 | (1) |
|
|
185 | (4) |
|
8.2.4 Corrected Ordinary Least Squares |
|
|
189 | (1) |
|
8.2.5 Corrected Ordinary Least Squares Using R |
|
|
189 | (2) |
|
8.3 Maximum Likelihood Estimation |
|
|
191 | (8) |
|
|
192 | (1) |
|
8.3.2 Estimation of Individual Inefficiency Terms |
|
|
193 | (2) |
|
8.3.3 Maximum Likelihood with R |
|
|
195 | (4) |
|
|
199 | (1) |
|
|
200 | (3) |
|
|
201 | (2) |
|
9 Panel Data Stochastic Frontier Analysis |
|
|
203 | (20) |
|
|
203 | (1) |
|
9.2 Homogeneity and Firm Specific Time Invariant Inefficiency |
|
|
204 | (4) |
|
9.3 Time Varying Firm Specific Inefficiency |
|
|
208 | (4) |
|
9.4 The Stochastic Frontier Model with Time Varying Inefficiency |
|
|
212 | (9) |
|
9.4.1 Sketching the Idea of the Approach |
|
|
213 | (1) |
|
9.4.2 Obtaining the Log-Likelihood |
|
|
214 | (3) |
|
9.4.3 Generating Data According to the Model |
|
|
217 | (4) |
|
|
221 | (1) |
|
|
221 | (2) |
|
|
222 | (1) |
Functions Index |
|
223 | (2) |
Subject Index |
|
225 | |