Muutke küpsiste eelistusi

E-raamat: Progress in Artificial Economics: Computational and Agent-Based Models

Edited by , Edited by , Edited by
  • Formaat - PDF+DRM
  • Hind: 110,53 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This series reports on new developments in mathematical economics, economic theory, econometrics, operations research, and mathematical systems.

Manuscripts should be no less than 150 and preferably no more than 500 pages in length.

Artificial economics aims to provide a generative approach to understanding problems in economics and social sciences. It is based on the consistent use of agent-based models and computational techniques. It encompasses a rich variety of techniques that generalize numerical analysis, mathematical programming, and micro-simulations. The peer-reviewed contributions in this volume address applications of artificial economics to markets and trading, auctions, networks, management, industry sectors, macroeconomics, and demographics and culture.
Part I Markets and Trading
Agent's Minimal Intelligence Calibration for Realistic Market Dynamics
3(12)
Iryna Veryzhenko
Olivier Brandouy
Philippe Mathieu
1 Introduction
3(1)
2 Literature Review
4(1)
2.1 Seminal Contribution and Initial Controversy
4(1)
3 ATOM and Real World Market
5(2)
4 Empirical Strategy and Results
7(5)
4.1 Data Description
7(1)
4.2 Calibration Elements: Agent's Behavior
7(2)
4.3 One Single Stock Detailed Results
9(3)
4.4 Population Statistics
12(1)
5 Conclusion
12(2)
References
14(1)
Trading on Marginal Information
15(12)
Florian Hauser
Bob Kaempff
1 Introduction
15(1)
2 Market Model
16(1)
3 Original Fundamental Trading Strategy
17(2)
4 Modified Fundamental Trading Strategy
19(5)
4.1 Definition
19(1)
4.2 Optimization for one Agent
20(3)
4.3 Equilibrium for two Possible Trading Strategies
23(1)
5 Conclusion
24(1)
References
25(2)
Stylized Facts Study through a Multi-Agent Based Simulation of an Artificial Stock Market
27(14)
Zahra Kodia
Lamjed Ben Said
Khaled Ghedira
1 Introduction
27(1)
2 The Micro/Macro Level of the Stock Market
28(6)
2.1 Trader Transaction Protocol
28(2)
2.2 New Cognitive Investor's Model
30(4)
2.3 Social Networks and Interactions
34(1)
3 Experiments and Results
34(3)
4 Conclusion
37(1)
References
37(4)
Part II Auctions
A Variable Bid Increment Algorithm for Reverse English Auction
41(12)
Imene Brigui-Chtioui
Suzanne Pinson
1 Introduction
41(1)
2 Related Works
42(2)
3 Auction Protocol
44(1)
4 Auction Model
45(2)
4.1 Multi-Agent Reverse English Auction Architecture
45(1)
4.2 Preference Model
46(1)
4.3 Aggregation Model
46(1)
5 Anytime Counterproposal Definition
47(3)
5.1 Propositions
48(1)
5.2 Properties
49(1)
6 Conclusion
50(1)
References
51(2)
Co-evolutionary Agents in Combinatorial Sealed-bid Auctions for Spectrum Licenses Markets
53(12)
Asuncion Mochon
Yago Saez
Jose Luis Gomez-Barroso
Pedro Isasi
1 Introduction
53(1)
2 The Combinatorial First-Price Sealed-Bid Auction
54(1)
3 The Scenarios
55(1)
4 Bidding by Means of Agent-Based Co-Evolutionary Learning
56(2)
5 Analysis of the Results
58(2)
6 Conclusions and Future Work
60(1)
References
61(4)
The Effect of Transaction Costs on Artificial Continuous Double Auction Markets
65(12)
Marta Posada
Cesareo Hernandez
1 Introduction
65(1)
2 The Agent-Based CDA Market Model
66(3)
2.1 The Institution
67(1)
2.2 The Environment
67(1)
2.3 Agent's Behavior
68(1)
3 The Experiments
69(1)
4 Measures and Main Results
70(2)
4.1 Market Efficiency
70(1)
4.2 Price Convergence
71(1)
5 Conclusions
72(2)
References
74(3)
Part III Networks
The Rise and Fall of Trust Networks
77(12)
Kartik Anand
Prasanna Gai
Matteo Marsili
1 Introduction
77(3)
2 The Model
80(2)
2.1 Foreclosure Game
81(1)
3 Results
82(3)
4 Discussion
85(1)
5 Appendix: The Algorithm
86(2)
References
88(1)
Simulations on Correlated Behavior and Social Learning
89(12)
Andrea Blasco
Paolo Pin
1 Introduction
89(2)
2 The Model
91(1)
3 Simulations on Networks
92(5)
4 Discussion
97(1)
Appendix
98(1)
References
99(2)
Technology Shocks and Trade in a Network
101(14)
Davoud Taghawi-Nejad
1 Introduction
101(1)
2 The Model
102(7)
2.1 Agents
102(1)
2.2 Rounds and Agents' Actions
103(6)
3 Analysis of the Agent-Based Model
109(2)
3.1 Business Cycles
110(1)
4 Growth in a Non-Growth Model
111(1)
5 Conclusion
111(1)
References
112(3)
Part IV Management
The (Beneficial) Role of Informational Imperfections in Enhancing Organisational Performance
115(12)
Friederike Wall
1 Introduction
115(1)
2 Model
116(4)
2.1 Organisational Structure
117(1)
2.2 Informational Imperfections
118(2)
3 Results
120(1)
4 Interpretation
121(4)
5 Conclusion
125(1)
References
125(2)
Social Interactions and Innovation: Simulation Based on an Agent-Based Modular Economy
127(12)
Bin-Tzong Chie
Shu-Heng Chen
1 Introduction: The Purpose of this Study
127(1)
2 Foundation of the Work
128(2)
3 Simulation Design
130(2)
4 Simulation Results
132(5)
4.1 Competitiveness Dynamics: A Macroscopic View
132(1)
4.2 Competitiveness Dynamics: A Microscopic View
133(1)
4.3 Competitiveness Dynamics: A Mesoscopic View
134(2)
4.4 Other Performance Criteria
136(1)
5 Concluding Remarks
137(1)
References
138(1)
Threshold Rule and Scaling Behavior in a Multi-Agent Supply Chain
139(14)
Valerio Lacagnina
Davide Provenzano
1 Introduction
139(2)
2 The Model
141(4)
2.1 The Network Structure
141(2)
2.2 Capital Flows
143(1)
2.3 From Bankruptcy to Rebirth
144(1)
3 Simulation Results
145(3)
3.1 Parameters Choice
145(1)
3.2 Firm Size Distribution
145(3)
4 Conclusions
148(2)
References
150(3)
Part V Industry Sectors
Information and Search on the Housing Market: An Agent-Based Model
153(12)
John McBreen
Florence Goffette-Nagot
Pablo Jensen
1 Introduction
154(1)
2 Model
155(2)
3 Results
157(6)
3.1 Landlords' Information Level
158(2)
3.2 Dynamically Varying the Discount Rate
160(3)
4 Conclusion
163(1)
5 Appendix: Initialisation
164(1)
References
164(1)
Adaptation of Investments in the Pharmaceutical Industry
165(12)
Tino Schutte
1 Introduction
165(1)
2 Modeling product market competition
166(5)
2.1 Modeling the Supply Side
167(2)
2.2 Modeling the Demand Side
169(1)
2.3 Statistical Variables
170(1)
2.4 Model Validation
170(1)
3 Simulating Investment Adjustments
171(4)
3.1 Success of Strategies: Innovative Firms
173(1)
3.2 Success of Strategies: Imitative Firms
174(1)
4 Conclusions
175(1)
References
176(1)
An Agent-Based Information Management Model of the Chinese Pig Sector
177(14)
Sjoukje A. Osinga
Mark R. Kramer
Gert Jan Hofstede
Omid Roozmand
Adrie J.M. Beulens
1 Introduction and Background Literature
177(2)
2 Problem Definition
179(2)
3 Methodology
181(2)
4 Simulation Experiments and Results
183(4)
5 Conclusions and Discussion
187(1)
References
187(4)
Part VI Macroeconomics
Wealth Distribution Evolution in an Agent-Based Computational Economy
191(12)
Victor Romanov
Dmitry Yakovlev
Anna Lelchuk
1 Introduction
191(1)
2 Equilibrium Wealth Distribution Models
192(2)
3 Model Architecture
194(2)
4 Agent Job Placement
196(1)
5 Customer Behavior
197(1)
6 Stock Market Functioning
198(1)
7 Enterprise Investment Strategy
199(1)
8 Results
199(2)
References
201(2)
Endogenous Credit Dynamics as Source of Business Cycles in the EURACE Model
203(12)
Andrea Teglio
Marco Raberto
Silvano Cincotti
1 Introduction
203(2)
2 The Model
205(3)
2.1 Goods and Labor Markets
205(2)
2.2 Credit and Financial Markets
207(1)
3 Results
208(4)
4 Concluding Remarks
212(1)
References
213(2)
Reinforcement Learning of Heterogeneous Private Agents in a Macroeconomic Policy Game
215(14)
Mahdi Hemmati
Masoud Nili
Nasser Sadati
1 Introduction
215(2)
2 Inflation-Unemployment Game with Heterogeneous Agents
217(3)
2.1 The Model with Homogeneous Agents
217(1)
2.2 Incorporation of Heterogeneous Agents
218(2)
3 Modeling of Learning Private Agents
220(3)
3.1 Why Reinforcement Learning?
220(1)
3.2 Overview of Reinforcement Learning
221(1)
3.3 Structure of our RL Agents
222(1)
4 Simulation Results
223(1)
5 Conclusion
224(1)
References
225(4)
Part VII Demographics and Culture
Towards an Agent-Based Model of the Economic Development Process: The Dynamics of the Fertility Rate
229(12)
Gianfranco Giulioni
Edgardo Bucciarelli
1 Introduction
229(2)
2 The Evolution of the Total Fertility Rate in Developed Countries
231(1)
3 The Household's Problem
232(3)
3.1 Analytical Insights
232(2)
3.2 Numerical Investigation
234(1)
4 The Agent-Based Model
235(2)
5 Conclusions
237(2)
References
239(2)
An Agent-Supported Simulation of Labour and Financial Markets for Migration Processes
241(12)
Nancy Ruiz
Vicente Botti
Adriana Giret
Vicente Julian
Oscar Alvarado
Victor Perez
Rosa M. Rodriguez
1 Introduction
242(1)
2 Labour and Financial Market Models
243(2)
2.1 Labour Market
244(1)
2.2 Financial Market
245(1)
3 Agent-Supported Simulation Architecture
245(3)
3.1 Agent-Supported Labour Market
246(1)
3.2 Agent-Supported Financial Market
247(1)
4 ARGOS: An Agent-based Demonstrator
248(1)
5 Experimentation
249(2)
6 Conclusions
251(1)
References
252(1)
Sensitivity Analysis of an Agent-Based Model of Culture's Consequences for Trade
253
Saskia L.G.E. Burgers
Gert Jan Hofstede
Catholijn M. Jonker
Tim Verwaart
1 Introduction
253(2)
2 Trading Agents with Cultural Background
255(1)
3 Sensitivity Analysis Approach
256(2)
4 Results
258(5)
4.1 Probability that Transactions Occur
258(2)
4.2 Sensitivity Analysis
260(2)
4.3 Differences between Cultures
262(1)
4.4 Aggregate and Individual Level
263(1)
5 Conclusion
263(1)
References
264