Muutke küpsiste eelistusi

E-raamat: Progress in Planar Optical Waveguides

  • Formaat: PDF+DRM
  • Sari: Springer Tracts in Modern Physics 266
  • Ilmumisaeg: 25-Nov-2015
  • Kirjastus: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • Keel: eng
  • ISBN-13: 9783662489840
  • Formaat - PDF+DRM
  • Hind: 110,53 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: PDF+DRM
  • Sari: Springer Tracts in Modern Physics 266
  • Ilmumisaeg: 25-Nov-2015
  • Kirjastus: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • Keel: eng
  • ISBN-13: 9783662489840

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book provides a comprehensive description of various slab waveguide structures ranged from graded-index waveguide to symmetrical metal-cladding waveguide. In this book, the transfer Matrix method is developed and applied to analyze the simplest case and the complex generalizations. A novel symmetrical metal-cladding waveguide structure is proposed and systematically investigated for several issues of interest, such as biochemical sensing, Goos-Hänchen shift and the slow light effect, etc. Besides, this book summarizes the authors’ research works on waveguides over the last decade. The readers who are familiar with basic optics theory may find this book easy to read and rather inspiring.
1 Basic Analysis on Optical Waveguides 1(16)
1.1 Basic Theory of Wave Optics
1(7)
1.1.1 Maxwell's Equation
1(1)
1.1.2 Matter Equation
2(1)
1.1.3 Wave Equation
3(2)
1.1.4 Boundary Condition for Electromagnetic Field
5(2)
1.1.5 Poynting Vector
7(1)
1.2 Reflection and Transmission of the Plane Waves
8(9)
1.2.1 Snell's Laws
9(1)
1.2.2 Fresnel Formula
9(2)
1.2.3 Brewster's Angle
11(1)
1.2.4 Total Internal Reflection
12(3)
1.2.5 Goos—Hanchen Shift
15(2)
2 Transfer Matrix Method and the Graded-Index Waveguide 17(26)
2.1 The Transfer Matrix and Its Characteristics
17(6)
2.2 The Eigenvalue Equation
23(2)
2.3 WKB Approximation
25(3)
2.4 Multilayer Optical Waveguides
28(8)
2.4.1 Asymmetric Four-Layer Slab Waveguide
28(5)
2.4.2 Multilayer Slab Waveguide
33(3)
2.5 The Transfer Matrix Treatment of the Graded-Index Waveguide
36(6)
2.5.1 The Eigenvalue Equation
36(4)
2.5.2 The Phase Shift at Turning Point
40(2)
References
42(1)
3 Periodic Waveguides and MQW Waveguide 43(40)
3.1 Rectangular Corrugated Periodic Waveguide
43(13)
3.1.1 From Corrugated Optical Waveguide to Rectangular Periodic Waveguide
43(3)
3.1.2 Transfer Matrix and the Coupling Coefficient
46(5)
3.1.3 Forward and Backward Traveling Waves
51(5)
3.2 Corrugated Periodic Waveguide of Arbitrary Shape
56(9)
3.2.1 Analytical Expression for Coupling Coefficient
57(5)
3.2.2 Typical Corrugated Periodic Waveguide
62(3)
3.3 Step-Index Multiple Quantum Well (MQW) Optical Waveguide
65(7)
3.3.1 Effective Permittivity of the Infinite Periodic Multilayers
65(2)
3.3.2 Effective Index of the MQW Waveguide
67(5)
3.4 MQW Optical Waveguide with Arbitrary Refractive Index Distribution
72(10)
3.4.1 Effective Index Method
72(5)
3.4.2 Non-Effective Index Method
77(5)
References
82(1)
4 Characterizing the Feature Parameters of Planar Optical Waveguide 83(30)
4.1 Four-Layer Leaky Waveguide
83(5)
4.1.1 Dispersion Equation
83(2)
4.1.2 Variation in the Propagation Constant
85(1)
4.1.3 Analytical Transfer Matrix Method
86(2)
4.2 Prism-Waveguide Coupling System
88(8)
4.2.1 Operational Principle and M-Line Spectroscopy
88(2)
4.2.2 Reflectivity Formula and Attenuated Total Reflection (ATR) Spectrum
90(4)
4.2.3 Measuring the Waveguide Layer's Thickness and RI
94(2)
4.3 Determining the RI Profile of Inhomogeneous Waveguide
96(3)
4.3.1 Inverse WKB Method
96(2)
4.3.2 Inverse ATM Method
98(1)
4.4 Measuring the Waveguide's Propagation Loss
99(8)
4.4.1 Perturbation Analysis of the Propagation Loss
101(3)
4.4.2 End-Face Coupling Method
104(1)
4.4.3 Sliding-Prism Method
105(1)
4.4.4 Digital Scattering Method
105(2)
4.5 Evaluating Nonlinear Parameters of Waveguide
107(4)
4.5.1 Measurement of the Electro-optic Coefficients
108(2)
4.5.2 Evaluating the Thermo-Optical Coefficient of Polymer Layer
110(1)
References
111(2)
5 Surface Plasmon Wave 113(32)
5.1 Optical Properties of Metal
114(4)
5.1.1 The Permittivity Constant of Metal
114(1)
5.1.2 Elementary Electronic Theory of Metal
115(3)
5.2 SPW on the Interface Between Metal and Dielectric
118(8)
5.2.1 Excitation Condition of SPW
118(3)
5.2.2 Loss
121(1)
5.2.3 The Excitation Scheme of the SPW
122(3)
5.2.4 Field Enhancement Effect
125(1)
5.3 Measurement of Metal Film's Thickness and Permittivity by Double-Wavelength Method
126(4)
5.3.1 Measurement Principle
126(3)
5.3.2 Experiment and Measurement
129(1)
5.4 Long-Range SPW of a Metal Film Structure
130(9)
5.4.1 Dispersion
130(3)
5.4.2 Loss
133(4)
5.4.3 Excitation of the LRSPW
137(1)
5.4.4 Field Enhancement Effect of the LRSPW
138(1)
5.5 Determination of Thickness and Permittivity of Thin Metal Films via a Modified ATR Configuration
139(3)
5.5.1 Measurement Principle
139(2)
5.5.2 Experiment and Measurement
141(1)
References
142(3)
6 Symmetrical Metal-Cladding Waveguide 145(18)
6.1 Dispersion Equation
146(6)
6.1.1 Dispersion Properties
146(2)
6.1.2 TM° Mode and TM1 Mode
148(3)
6.1.3 The Degeneracy of TM° Mode and TM1 Mode
151(1)
6.2 Free-Space Coupling Technology
152(3)
6.3 Ultrahigh-Order Mode
155(2)
6.4 WideBand Slow Light
157(2)
6.5 Conical Reflection
159(2)
References
161(2)
7 Goos—Hanchen Shift 163(28)
7.1 Obstacle in the Ray Theory
163(3)
7.1.1 Contradiction Between the Ray Theory and the Electromagnetic Field Theory
163(2)
7.1.2 The Addition of Lateral Phase Shift
165(1)
7.2 Causality Paradoxes in Gires—Tournois Interferometer and Plasma Mirror
166(6)
7.2.1 Causality Paradox in Gires—Tournois Interferometer
166(1)
7.2.2 Interpretation of Causality Paradox in the Gires—Tournois Interferometer
167(1)
7.2.3 Causality Paradox Associated with Total Reflection upon the Plasma Mirror
168(1)
7.2.4 Interpretation of Causality Paradox in the Plasma Mirror
169(1)
7.2.5 Detailed Analysis of the Optical Waveguide
170(2)
7.3 Generalized Form of the GH Time
172(3)
7.3.1 Group Velocity of the Planar Waveguide
172(2)
7.3.2 Generalized Form of the GH Time
174(1)
7.4 Theoretical Models for the GH Shift
175(6)
7.4.1 Stationary-Phase Approach
175(2)
7.4.2 Gaussian Beam Model
177(2)
7.4.3 Interference Approach
179(2)
7.5 Enhancement of the GH Shift
181(6)
7.5.1 Near the Brewster Angle
182(1)
7.5.2 Surface Plasmon Resonance
183(1)
7.5.3 Prism—Waveguide Coupling System
184(1)
7.5.4 Symmetrical Metal-Cladding Waveguide
185(2)
7.6 Other Non-Specular Reflection Effects
187(1)
References
188(3)
8 Optical Devices Based on the Attenuated Total Reflection 191
8.1 Optical Waveguide Filters
191(4)
8.1.1 Tunable Narrow Band Filter
192(2)
8.1.2 Tunable Comb Filter
194(1)
8.2 Analysis on the Sensitivity
195(2)
8.2.1 Definition of Sensitivity
195(1)
8.2.2 Physical Meaning of the Sensing Efficiency
196(1)
8.3 Evanescent Wave Sensors
197(4)
8.3.1 SPR Sensor
198(2)
8.3.2 The Leaky Waveguide Sensor
200(1)
8.3.3 Reverse Symmetry Waveguide Sensor
200(1)
8.4 Oscillating Wave Sensors Based on the Light Intensity
201(11)
8.4.1 Aqueous Solution Concentration Sensor
202(2)
8.4.2 Trace Chromium (VI) Sensor
204(3)
8.4.3 Displacement Sensor
207(3)
8.4.4 Angular Displacement Sensor
210(1)
8.4.5 Wavelength Sensor
211(1)
8.5 Oscillating Wave Sensors Based on the Goos—Hanchen Shift
212(6)
8.5.1 Aqueous Solution Concentration Sensor
212(1)
8.5.2 Displacement Sensor
213(2)
8.5.3 Wavelength Sensor
215(2)
8.5.4 Enhanced Superprism Effect
217(1)
8.6 Electro-optical Devices
218(6)
8.6.1 Low-Voltage Electro-optic Polymer Modulator
218(2)
8.6.2 Variable Optical Attenuator
220(1)
8.6.3 Tunable Polarization Beam Splitter
221(1)
8.6.4 Electric Controlling of the Beam Position
222(2)
8.7 Research on Ferrofluid
224(13)
8.7.1 Ferrofluid and Its Magneto-Optical Effects
224(3)
8.7.2 Optical Trapping and Soret Effect
227(2)
8.7.3 Magneto-optical Modulation
229(6)
8.7.4 All-Optical Modulation
235(2)
8.8 Self-assembly Concentric Circular Grating
237(2)
References
239
Dr. Xianping Wang is the Assistant Professor at Jiangxi Normal University, Nanchang, China.

Dr. Cheng Yin is the Assistant Professor at Jiangsu Key Laboratory of Power Transmission and Distribution Equipment Technology, Hohai University, China.

Prof. Zhuangqi Cao is a Professor of Physics at Shanghai Jiao Tong University, China. He has published 5 books, more than 200 journal papers, and owns 21 awarded patents.