Muutke küpsiste eelistusi

E-raamat: Projective Geometry: Solved Problems and Theory Review

  • Formaat: PDF+DRM
  • Sari: La Matematica per il 3+2 104
  • Ilmumisaeg: 17-Dec-2016
  • Kirjastus: Springer International Publishing AG
  • Keel: eng
  • ISBN-13: 9783319428246
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 55,56 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: PDF+DRM
  • Sari: La Matematica per il 3+2 104
  • Ilmumisaeg: 17-Dec-2016
  • Kirjastus: Springer International Publishing AG
  • Keel: eng
  • ISBN-13: 9783319428246
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book starts with a concise but rigorous overview of the basic notions of projective geometry, using straightforward and modern language. The goal is not only to establish the notation and terminology used, but also to offer the reader a quick survey of the subject matter. In the second part, the book presents more than 200 solved problems, for many of which several alternative solutions are provided. The level of difficulty of the exercises varies considerably: they range from computations to harder problems of a more theoretical nature, up to some actual complements of the theory. The structure of the text allows the reader to use the solutions of the exercises both to master the basic notions and techniques and to further their knowledge of the subject, thus learning some classical results not covered in the first part of the book. The book addresses the needs of undergraduate and graduate students in the theoretical and applied sciences, and will especially benefit those r

eaders with a solid grasp of elementary Linear Algebra.

1 Theory review.- 2 Exercises on projective spaces.- 3 Exercises on curves and hypersurfaces.- 4 Esercises on conics and quadrics.

Arvustused

This is a modern textbook on classic projective geometry over (mostly) real and complex vectorspaces. The book will also serve well as a source and reference for an undergraduate lecture plus exercise course on projective geometry. (Hans-Peter Schröcker, zbMATH 1361.51004, 2017)

1 Theory Review
1(60)
1.1 Standard Notation
1(1)
1.2 Projective Spaces and Subspaces, Projective Transformations
2(3)
1.2.1 Projective Spaces and Subspaces
2(1)
1.2.2 Projective Transformations
3(1)
1.2.3 Operations on Subspaces
3(1)
1.2.4 The Projective Linear Group
4(1)
1.2.5 Fixed Points
4(1)
1.2.6 Degenerate Projective Transformations
4(1)
1.2.7 Projection Centred at a Subspace
5(1)
1.2.8 Perspectivities
5(1)
1.3 Projective Frames and Homogeneous Coordinates
5(7)
1.3.1 General Position and Projective Frames
5(1)
1.3.2 Systems of Homogeneous Coordinates
6(1)
1.3.3 Analytic Representation of a Projective Transformation
7(1)
1.3.4 Change of Projective Frames
7(1)
1.3.5 Cartesian Representation of Subspaces
7(1)
1.3.6 Parametric Representation of Subspaces
8(1)
1.3.7 Extension of Projective Frames
9(1)
1.3.8 Affine Charts
9(2)
1.3.9 Projective Closure of an Affine Subspace
11(1)
1.3.10 Projective Transformations and Change of Coordinates
11(1)
1.4 Dual Projective Space and Duality
12(3)
1.4.1 Dual Projective Space
12(1)
1.4.2 Duality Correspondence
13(1)
1.4.3 Linear Systems of Hyperplanes
13(1)
1.4.4 Duality Principle
14(1)
1.4.5 Dual Projectivity
15(1)
1.5 Projective Spaces of Dimension 1
15(4)
1.5.1 Cross-Ratio
15(1)
1.5.2 Symmetries of the Cross-Ratio
16(1)
1.5.3 Classification of the Projectivities of P'(C) and of P1(R)
17(1)
1.5.4 Characteristic of a Projectivity
18(1)
1.6 Conjugation and Complexification
19(1)
1.7 Affine and Projective Hypersurfaces
19(12)
1.7.1 Homogeneous Polynomials
20(1)
1.7.2 Affine and Projective Hypersurfaces
21(2)
1.7.3 Intersection of a Hypersurface with a Hyperplane
23(1)
1.7.4 Projective Closure of an Affine Hypersurface
24(1)
1.7.5 Affine and Projective Equivalence of Hypersurfaces
25(1)
1.7.6 Intersection of a Hypersurface and a Line
26(1)
1.7.7 Tangent Space to a Hypersurface, Singular Points
27(1)
1.7.8 Multiplicity of a Point of a Hypersurface
28(1)
1.7.9 Real Hypersurfaces
29(2)
1.8 Quadrics
31(20)
1.8.1 First Notions and Projective Classification
31(2)
1.8.2 Polarity with Respect to a Quadric
33(2)
1.8.3 Intersection of a Quadric with a Line
35(1)
1.8.4 Projective Quadrics in P2(K) and in P3(K)
35(4)
1.8.5 Quadrics in Rn
39(4)
1.8.6 Diametral Hyperplanes, Axes, Vertices
43(2)
1.8.7 Conies of R2
45(3)
1.8.8 Quadrics of R3
48(3)
1.9 Plane Algebraic Curves
51(10)
1.9.1 Local Study of a Plane Algebraic Curve
51(2)
1.9.2 The Resultant of Two Polynomials
53(1)
1.9.3 Intersection of Two Curves
54(2)
1.9.4 Inflection Points
56(1)
1.9.5 Linear Systems, Pencils
56(1)
1.9.6 Linear Conditions
57(1)
1.9.7 Pencils of Conies
58(3)
2 Exercises on Projective Spaces
61(46)
3 Exercises on Curves and Hypersurfaces
107(66)
4 Exercises on Conies and Quadrics
173(90)
Index 263
Elisabetta Fortuna was born in Pisa in 1955. In 1977 she received her Diploma di Licenza in Mathematics from Scuola Normale Superiore in Pisa. Since 2001 she is Associate Professor at the University of Pisa. Her areas of research are real and complex analytic geometry, real algebraic geometry, computational algebraic geometry. Roberto Frigerio was born in Como in 1977. In 2005 he received his Ph.D. in Mathematics at Scuola Normale Superiore in Pisa. Since 2014 he is Associate Professor at the University of Pisa. His primary scientific interests are focused on low-dimensional topology, hyperbolic geometry and geometric group theory. Rita Pardini was born in Lucca in 1960. She received her Ph.D. in Mathematics from Scuola Normale Superiore in Pisa in 1990; she is Full Professor at the University of Pisa since 2004. Her area of research is classical algebraic geometry, in particular algebraic surfaces and their moduli, irregular varieties and coverings.