Preface |
|
ix | |
|
|
1 | (12) |
|
1.1 From Geometry to Dynamics |
|
|
1 | (2) |
|
1.2 The Projective Heat Map |
|
|
3 | (1) |
|
1.3 A Picture of the Julia Set |
|
|
4 | (1) |
|
|
4 | (2) |
|
|
6 | (2) |
|
|
8 | (1) |
|
|
8 | (1) |
|
|
9 | (1) |
|
1.9 Outline of the Monograph |
|
|
10 | (1) |
|
|
11 | (2) |
Part 1 |
|
13 | (48) |
|
Chapter 2 Some Other Polygon Iterations |
|
|
15 | (8) |
|
|
15 | (1) |
|
2.2 The Midpoint Iteration |
|
|
15 | (2) |
|
|
17 | (1) |
|
|
18 | (1) |
|
|
19 | (4) |
|
Chapter 3 A Primer on Projective Geometry |
|
|
23 | (8) |
|
3.1 The Real Projective Plane |
|
|
23 | (1) |
|
|
23 | (1) |
|
3.3 Projective Transformations and Dualities |
|
|
24 | (1) |
|
|
24 | (1) |
|
|
25 | (2) |
|
3.6 Projective Invariants of Polygons |
|
|
27 | (2) |
|
3.7 Duality and Relabeling |
|
|
29 | (1) |
|
|
30 | (1) |
|
Chapter 4 Elementary Algebraic Geometry |
|
|
31 | (6) |
|
|
31 | (1) |
|
|
31 | (1) |
|
4.3 Homogeneous Polynomials |
|
|
32 | (1) |
|
|
32 | (1) |
|
4.5 The Blow-up Construction |
|
|
33 | (4) |
|
Chapter 5 The Pentagram Map |
|
|
37 | (10) |
|
5.1 The Pentagram Configuration Theorem |
|
|
37 | (1) |
|
5.2 The Pentagram Map in Coordinates |
|
|
37 | (2) |
|
5.3 The First Pentagram Invariant |
|
|
39 | (1) |
|
5.4 The Poincare Recurrence Theorem |
|
|
40 | (1) |
|
5.5 Recurrence of the Pentagram Map |
|
|
41 | (1) |
|
|
42 | (1) |
|
5.7 The Pentagram Invariants |
|
|
42 | (1) |
|
5.8 Symplectic Manifolds and Torus Motion |
|
|
43 | (1) |
|
5.9 Complete Integrability |
|
|
44 | (3) |
|
Chapter 6 Some Related Dynamical Systems |
|
|
47 | (14) |
|
6.1 Julia Sets of Rational Maps |
|
|
47 | (1) |
|
|
48 | (3) |
|
|
51 | (1) |
|
|
51 | (1) |
|
|
52 | (6) |
|
|
58 | (1) |
|
|
59 | (2) |
Part 2 |
|
61 | (60) |
|
Chapter 7 The Projective Heat Map |
|
|
63 | (8) |
|
7.1 The Reconstruction Formula |
|
|
63 | (1) |
|
|
64 | (1) |
|
7.3 Formulas for the Projective Heat Map |
|
|
65 | (2) |
|
7.4 The Case of Pentagons |
|
|
67 | (1) |
|
|
68 | (3) |
|
Chapter 8 Topological Degree of the Map |
|
|
71 | (4) |
|
|
71 | (1) |
|
|
71 | (1) |
|
|
72 | (3) |
|
Chapter 9 The Convex Case |
|
|
75 | (6) |
|
9.1 Flag Invariants of Convex Pentagons |
|
|
75 | (1) |
|
9.2 The Gauss Group Acting on the Unit Square |
|
|
76 | (1) |
|
9.3 A Positivity Criterion |
|
|
76 | (2) |
|
|
78 | (2) |
|
9.5 The Action on the Boundary |
|
|
80 | (1) |
|
|
80 | (1) |
|
Chapter 10 The Basic Domains |
|
|
81 | (8) |
|
10.1 The Space of Pentagons |
|
|
81 | (1) |
|
10.2 The Action of the Gauss Group |
|
|
82 | (1) |
|
10.3 Changing Coordinates |
|
|
83 | (1) |
|
10.4 Convex and Star Convex Classes |
|
|
84 | (1) |
|
|
84 | (2) |
|
10.6 A Global Point of View |
|
|
86 | (3) |
|
Chapter 11 The Method of Positive Dominance |
|
|
89 | (8) |
|
11.1 The Divide and Conquer Algorithm |
|
|
89 | (2) |
|
|
91 | (1) |
|
11.3 The Denominator Test |
|
|
91 | (2) |
|
|
93 | (1) |
|
|
93 | (1) |
|
11.6 The Confinement Test |
|
|
94 | (1) |
|
|
95 | (1) |
|
|
95 | (1) |
|
|
96 | (1) |
|
Chapter 12 The Cantor Set |
|
|
97 | (12) |
|
|
97 | (1) |
|
|
98 | (1) |
|
|
99 | (2) |
|
12.4 The Diffeomorphism Property |
|
|
101 | (3) |
|
|
104 | (1) |
|
12.6 Proof of the Measure Expansion Lemma |
|
|
105 | (1) |
|
12.7 Proof of the Metric Expansion Lemma |
|
|
105 | (2) |
|
|
107 | (2) |
|
Chapter 13 Towards the Quasi Horseshoe |
|
|
109 | (6) |
|
|
109 | (1) |
|
|
109 | (2) |
|
|
111 | (2) |
|
13.4 The Last Three pieces |
|
|
113 | (2) |
|
Chapter 14 The Quasi Horseshoe |
|
|
115 | (6) |
|
|
115 | (1) |
|
14.2 Existence of The Quasi Horseshoe |
|
|
115 | (2) |
|
14.3 The Invariant Cantor Band |
|
|
117 | (1) |
|
|
118 | (1) |
|
|
118 | (1) |
|
|
119 | (2) |
Part 3 |
|
121 | (72) |
|
Chapter 15 Sketches for the Remaining Results |
|
|
123 | (8) |
|
|
123 | (1) |
|
|
124 | (2) |
|
|
126 | (1) |
|
|
127 | (1) |
|
|
128 | (1) |
|
15.6 The Postcritical Set |
|
|
128 | (1) |
|
15.7 No Rational Fibration |
|
|
129 | (2) |
|
Chapter 16 Towards the Solenoid |
|
|
131 | (10) |
|
|
131 | (1) |
|
|
132 | (3) |
|
|
135 | (3) |
|
|
138 | (3) |
|
|
141 | (8) |
|
17.1 Recognizing the BJK Continuum |
|
|
141 | (1) |
|
|
142 | (1) |
|
17.3 Connectivity and Unboundedness |
|
|
143 | (1) |
|
|
144 | (1) |
|
17.5 Using Symmetry for the Cone Points |
|
|
144 | (1) |
|
17.6 The First Cone Point |
|
|
145 | (1) |
|
17.7 The Second Cone Point |
|
|
146 | (3) |
|
Chapter 18 Local Structure of the Julia Set |
|
|
149 | (12) |
|
18.1 Blowing Down the Exceptional Fibers |
|
|
149 | (2) |
|
18.2 Everything but One Piece |
|
|
151 | (1) |
|
|
151 | (6) |
|
|
157 | (3) |
|
18.5 Some Definedness Results |
|
|
160 | (1) |
|
Chapter 19 The Embedded Graph |
|
|
161 | (14) |
|
19.1 Defining the Generator |
|
|
161 | (5) |
|
19.2 From Generator to Edge |
|
|
166 | (1) |
|
19.3 From Edge to Pentagon |
|
|
167 | (1) |
|
19.4 Pre-images of the Pentagon |
|
|
168 | (1) |
|
|
169 | (1) |
|
19.6 The Second Connection |
|
|
170 | (2) |
|
|
172 | (1) |
|
19.8 The End of the Proof |
|
|
173 | (2) |
|
Chapter 20 Connectedness of the Julia Set |
|
|
175 | (12) |
|
20.1 The Region Between the Disks |
|
|
175 | (4) |
|
20.2 The Local Diffeomorphism Lemma |
|
|
179 | (2) |
|
20.3 A Case by Case Analysis |
|
|
181 | (4) |
|
|
185 | (2) |
|
Chapter 21 Terms, Formulas, and Coordinate Listings |
|
|
187 | (6) |
|
|
187 | (2) |
|
21.2 Two Important Numbers |
|
|
189 | (1) |
|
|
189 | (1) |
|
|
189 | (1) |
|
21.5 The Cantor Set Pieces |
|
|
190 | (1) |
|
21.6 The Horseshoe Pieces |
|
|
190 | (2) |
|
|
192 | (1) |
|
|
192 | (1) |
References |
|
193 | |