Muutke küpsiste eelistusi

E-raamat: Prompt Engineering for Generative AI

  • Formaat: 422 pages
  • Ilmumisaeg: 16-May-2024
  • Kirjastus: O'Reilly Media
  • Keel: eng
  • ISBN-13: 9781098153403
  • Formaat - PDF+DRM
  • Hind: 63,77 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: 422 pages
  • Ilmumisaeg: 16-May-2024
  • Kirjastus: O'Reilly Media
  • Keel: eng
  • ISBN-13: 9781098153403

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Large language models (LLMs) and diffusion models such as ChatGPT and Stable Diffusion have unprecedented potential. Because they have been trained on all the public text and images on the internet, they can make useful contributions to a wide variety of tasks. And with the barrier to entry greatly reduced today, practically any developer can harness LLMs and diffusion models to tackle problems previously unsuitable for automation.

With this book, you'll gain a solid foundation in generative AI, including how to apply these models in practice. When first integrating LLMs and diffusion models into their workflows, most developers struggle to coax reliable enough results from them to use in automated systems. Authors James Phoenix and Mike Taylor show you how a set of principles called prompt engineering can enable you to work effectively with AI.

Learn how to empower AI to work for you. This book explains:

  • The structure of the interaction chain of your program's AI model and the fine-grained steps in between
  • How AI model requests arise from transforming the application problem into a document completion problem in the model training domain
  • The influence of LLM and diffusion model architecture—and how to best interact with it
  • How these principles apply in practice in the domains of natural language processing, text and image generation, and code

James Phoenix has a background in building reliable data pipelines for marketing teams, including automation of thousands of recurring marketing tasks. He has taught 40+ Data Science bootcamps for General Assembly. Mike Taylor built and ran a 50-person marketing agency, including working on innovation projects with Unilever, Nestle, and Facebook. Over 300,000 people have taken his marketing courses on LinkedIn Learning.