Muutke küpsiste eelistusi

E-raamat: Prompt Engineering for LLMs: The Art and Science of Building Large Language Model-Based Applications

  • Formaat: 282 pages
  • Ilmumisaeg: 04-Nov-2024
  • Kirjastus: O'Reilly Media
  • Keel: eng
  • ISBN-13: 9781098156114
  • Formaat - EPUB+DRM
  • Hind: 63,77 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: 282 pages
  • Ilmumisaeg: 04-Nov-2024
  • Kirjastus: O'Reilly Media
  • Keel: eng
  • ISBN-13: 9781098156114

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Large language models (LLMs) are revolutionizing the world, promising to automate tasks and solve complex problems. A new generation of software applications are using these models as building blocks to unlock new potential in almost every domain, but reliably accessing these capabilities requires new skills. This book will teach you the art and science of prompt engineering-the key to unlocking the true potential of LLMs.

Industry experts John Berryman and Albert Ziegler share how to communicate effectively with AI, transforming your ideas into a language model-friendly format. By learning both the philosophical foundation and practical techniques, you'll be equipped with the knowledge and confidence to build the next generation of LLM-powered applications.

Understand LLM architecture and learn how to best interact with it Design a complete prompt-crafting strategy for an application Gather, triage, and present context elements to make an efficient prompt Master specific prompt-crafting techniques like few-shot learning, chain-of-thought prompting, and RAG
John Berryman started out in Aerospace Engineering but soon found that he was more interested in math and software than in satellites and aircraft. He soon switched to software development, specializing in search and recommendation technologies, and not too long afterward co-authored Relevant Search. At GitHub John played a prominent role in moving code search to a new scalable infrastructure. Subsequently John joined the Data Science team, and then Copilot where he currently provides technical leadership and direction in Prompt Crafting work. Albert Ziegler is a principal machine learning engineer with a PhD in Mathematics and a home at GitHub Next, GitHub's innovation and future group. His main interests are fusion of deductive and intuitive reasoning to improve the software development experience. At GitHub Next, he was part of the trio that conceived and implemented GitHub Copilot, the first large scale product delivering generative AI for software development. His most recent projects include Copilot Radar and AI for Pull Requests.