Muutke küpsiste eelistusi

E-raamat: Protecting Location Privacy in the Era of Big Data: A Technical Perspective

, , (Macquarie University)
  • Formaat: 136 pages
  • Ilmumisaeg: 10-Dec-2024
  • Kirjastus: CRC Press
  • Keel: eng
  • ISBN-13: 9781040226155
  • Formaat - PDF+DRM
  • Hind: 77,99 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Raamatukogudele
  • Formaat: 136 pages
  • Ilmumisaeg: 10-Dec-2024
  • Kirjastus: CRC Press
  • Keel: eng
  • ISBN-13: 9781040226155

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book examines the uses and potential risks of location-based services (LBS) in the context of big data, with a focus on location privacy protection methods.

The growth of the mobile Internet and the popularity of smart devices have spurred the development of LBS and related mobile applications. However, the misuse of sensitive location data could compromise the physical and communication security of associated devices and nodes, potentially leading to privacy breaches. This book explores the potential risks to the location privacy of mobile users in the context of big data applications. It discusses the latest methods and implications of location privacy from different perspectives. The author offers case studies of three applications: statistical disclosure and privacy protection of location-based big data using a centralised differential privacy model; a user location perturbation mechanism based on a localised differential privacy model; and terminal location perturbation using a geo-indistinguishability model. Linking recent developments in three-dimensional positioning and artificial intelligence, the book also predicts future trends and provides insights into research issues in location privacy.

This title will be a valuable resource for researchers, students, and professionals interested in location-based services, privacy computing and protection, wireless network security, and big data security.



This book examines the uses and potential risks of location-based services (LBS) in the context of big data, with a focus on location privacy protection methods.

1. Introduction
2. Location-based Services and Location Privacy Protection
3. Dynamic Statistical Publishing and Privacy Protection of Location-based Big Data via Adaptive Sampling and Grid Clustering
4. Localized Location Privacy Protection based on Optimized Random Response
5. Achieving Location Privacy Protection via Geo-indistinguishability and Location Semantics
6. Conclusion

Yan Yan is a Professor of the School of Computer and Communication, Lanzhou University of Technology, China. Her research interests include, but are not limited to, privacy preserving data collection, privacy preserving data publishing, blockchain transaction privacy protection, and multimedia information security.

Adnan Mahmood is a Lecturer in ComputingIoT and Networking at the School of Computing, Macquarie University, Sydney, Australia. His research interests include, but are not limited to, the Internet of Things (primarily, the Internet of Vehicles), Trust Management, Software-Defined Networking, and the Next Generation Heterogeneous Wireless Networks.

Quan Z. Sheng is a Distinguished Professor and Head of School of Computing at Macquarie University, Australia. He is ranked by Microsoft Academic as one of the Most Impactful Authors in Services Computing (ranked Top 5 of All Time worldwide) and in the Web of Things (ranked Top 20 All Time).