Muutke küpsiste eelistusi

E-raamat: Proteome Research: Concepts, Technology and Application

Edited by , Edited by , Edited by , Edited by
  • Formaat: PDF+DRM
  • Sari: Principles and Practice
  • Ilmumisaeg: 11-Aug-2007
  • Kirjastus: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • Keel: eng
  • ISBN-13: 9783540729105
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 110,53 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: PDF+DRM
  • Sari: Principles and Practice
  • Ilmumisaeg: 11-Aug-2007
  • Kirjastus: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • Keel: eng
  • ISBN-13: 9783540729105
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This clearly written book provides a clear conceptual description of each facet of proteomics. It describes recent advances in technology and thinking in each area, and provides details of how these have been applied to a variety of biological problems.



Proteomics is a multifaceted, interdisciplinary field which studies the complexity and dynamics of proteins in biological systems. It combines powerful separation and analytical technology with advanced informatics to understand the function of proteins in the cell and in the body. This book provides a clear conceptual description of each facet of proteomics, describes recent advances in technology and thinking in each area, and provides details of how these have been applied to a variety of biological problems. It is written by expert practitioners in the field, from industry, research institutions, and the clinic. It provides junior and experienced researchers with an invaluable proteomic reference, and gives fascinating glimpses of the future of this dynamic field.

Ten Years of the Proteome
1(14)
Marc R. Wilkins
Ron D. Appel
Introduction to the Proteome
1(2)
What's in a Word?
2(1)
Could Things Have Been Different?
3(1)
Proteomics Is Technology-Driven
3(5)
Protein Separations
3(2)
Mass Spectrometry
5(1)
Making Sense of All the Data
6(2)
What Has Proteomics Delivered?
8(1)
What Still Eludes Us?
9(2)
This Book and Some Conclusions
11(4)
References
11(4)
Sample Preparation and Prefractionation Techniques for Electrophoresis-Based Proteomics
15(26)
Ben R. Herbert
Pier Giorgio Righetti
Attilio Citterio
Egisto Boschetti
Introduction
15(1)
Conventional Sample Preparation
16(2)
Artefacts
18(4)
Cysteine Chemistry - Reduction and Alkylation
18(1)
Cysteine Chemistry - β-Elimination
19(1)
Lysine Chemistry - Carbamylation
20(2)
Multiplexed Approaches to Proteomics
22(2)
Prefractionation Tools
24(6)
Fractional Centrifugation
24(1)
Chromatographic Techniques
25(1)
General Chromatographic Methods
25(1)
Sample Fractionation with Stacked Sorbents
26(1)
Electrophoresis-Based Methods
26(1)
Continuous Electrophoresis in Free Liquid Films
27(1)
Rotationally Stabilised Focusing Apparatus: the Rotofor
28(1)
Sample Prefractionation via Multicompartment Electrolysers with Isoelectric Membranes
28(2)
Miniaturised Isoelectric Separation Devices
30(1)
Other Methods for Prefractionation of Samples
30(5)
Depletion of High-Abundance Proteins
30(1)
Equaliser Beads: the Democratic Versus the Plutocratic Proteome
31(4)
Conclusions
35(6)
References
36(5)
Protein Identification in Proteomics
41(28)
Patricia Hernandez
Pierre-Alain Binz
Marc R. Wilkins
Introduction
41(1)
Attributes of Proteins Useful for Their Identification
42(3)
Species of Origin
42(1)
Protein Isoelectric Point
42(1)
Protein Mass
42(1)
Partial Sequence or Sequence Tag
43(1)
Protein Amino Acid Composition
43(2)
Protein Identification by Mass Spectrometry
45(20)
`Top-Down' Versus `Bottom-Up' Strategies for Protein Identification
45(2)
Introduction to Mass Spectrometry
47(1)
Ionisation
47(1)
Mass Analysis
48(2)
Instrumentation
50(1)
Protein Identification by Peptide Mass Fingerprinting
51(1)
Principle
51(2)
Identification and Characterisation of Modified Peptides by Peptide Mass Fingerprinting
53(2)
Limitations of Peptide Mass Fingerprinting
55(1)
Tandem Mass Spectrometry Based Identification
56(1)
Tandem Mass Spectrometry Spectra
56(1)
The `Peptide Fragment Fingerprinting' Approach
57(3)
De Novo Sequencing
60(1)
Identification and Characterisation of Peptides with Unexpected Modifications
61(1)
Spectral Library Searches
62(3)
List of Tools and URLs
65(1)
Concluding Remarks
65(4)
References
66(3)
Quantitation in Proteomics
69(26)
Garry L. Corthals
Keith Rose
Introduction
69(1)
Non-mass-spectrometric Approaches to Quantitation
70(4)
Relative Quantitation by Mass Spectrometry
74(9)
Absolute or Relative Quantitation?
76(1)
Introduction of Stable Isotopes Using Chemical Tags
76(4)
Enzyme-Mediated Incorporation of Stable Isotopes
80(1)
Biological Incorporation of Stable Isotopes by Metabolic Labelling
81(1)
Relative Quantitation Without Use of Stable Isotope Labelling
82(1)
Absolute Quantitation by Mass Spectrometry
82(1)
Analysis of Known Post-translational Modifications
83(4)
Glycosylation
83(2)
Phosphorylation
85(2)
Ubiquitinylation
87(1)
Conclusions
87(8)
References
88(7)
One Gene, Many Proteins
95(28)
Nicolle H. Packer
Andrew A. Gooley
Marc R. Wilkins
Introduction
95(4)
An Overview of Modifications: What Are They and Where Do They Occur?
99(1)
How Do We Find Post-translational Modifications?
100(5)
Separation of Isoforms
100(2)
Detection of Co- and Post-translational Modifications
102(1)
Strategy for the Analysis of Modifications: Top Down Versus Bottom Up
103(1)
Mass Spectrometry for Analysis of Co- and Post-translational Modifications
104(1)
Analysis of Specific Modifications
105(4)
Acetylation
106(1)
Phosphorylation
106(1)
Ubiquitination and Sumoylation
107(1)
Glycosylation
107(2)
The Function of Protein Post-translational Modifications: More Than Meets the Eye?
109(2)
Some Interesting Modification Stories
111(5)
The Erythropoietin Story
111(2)
The Apolipoprotein E Story
113(1)
The Progeria Story
114(1)
The Influenza Story
115(1)
Future Directions
116(7)
References
116(7)
Proteome Imaging
123(22)
Patricia M. Palagi
Daniel Walther
Catherine G. Zimmermann-Ivol
Ron D. Appel
Introduction
123(1)
Image Analysis of Two-Dimensional Electrophoresis Gels
124(6)
First Steps in Gel Image Analysis
125(2)
Applications to Different Proteomics Approaches
127(1)
Single-Gel Analysis
128(1)
Groups of Gels
128(1)
Two-Dimensional Difference Gel Electrophoresis
128(2)
Liquid Chromatography-Mass Spectrometry
130(4)
First Steps in Liquid Chromatography-Mass Spectrometry Image Analysis
130(1)
Applications to Different Proteomics Approaches
131(1)
Monitoring Experiments and Post-translational Modifications
131(1)
Sample Populations
132(2)
The Molecular Scanner
134(4)
Imaging Mass Spectrometry
138(3)
Imaging Mass Spectrometry - Technical Aspects
139(1)
Imaging Mass Spectrometry - Applications
140(1)
Conclusion
141(4)
References
142(3)
Data Integration in Proteomics
145(24)
Frederique Lisacek
Christine Hoogland
Lydie Bougueleret
Amos Bairoch
Introduction
145(3)
Integration As Gathering and Cross-Linking Information
148(11)
Selection of Sources and Quantification
148(1)
Trends in Databases
148(1)
Data Evolution
149(1)
Biology Inspired Cross-Linking
150(1)
The UniProt Universal Protein Knowledgebase
150(2)
Human Protein Atlas
152(1)
Integrating Elements of the Proteomics Workflow
153(1)
High-Throughput Data: Standards and Repositories
153(1)
Swiss-2DPage
154(1)
PeptideAtlas and the Global Proteome Machine
155(1)
Other Noteworthy Efforts
156(1)
Integration As a Federated Effort
156(1)
Proteomics Servers
156(2)
Semantic Web Approach
158(1)
Integration As Blending of Information
159(5)
Textual Information
159(1)
Ontologies
160(1)
Examples of Visualisation Tools Merging Several Sources
161(1)
From Data Integration to Systems Biology
162(2)
Concluding Remarks
164(5)
References
164(5)
Protein-Protein Interactions
169(24)
Anne-Claude Gavin
Introduction
169(1)
Protein-Protein Interactions in Human Diseases: Altered Protein Connectivity Leads to Disorder
170(2)
Charting Protein-Protein Interactions
172(9)
Characterisation of All Coding Sequences in an Organism
175(1)
Monitoring Binary Interactions: the Yeast Two-Hybrid System
175(2)
Analysis of Protein Complexes by Affinity Purification and Mass Spectrometry
177(3)
Luminescence-Based Mammalian Interactome Mapping
180(1)
Protein Microarrays
180(1)
Data Quality
180(1)
Biological and Biomedical Applications
181(5)
Charting of Diseases and Pharmacologically Relevant Pathways
181(1)
Lessons Learned from Global Interaction Analyses in Yeast
182(2)
An Emerging Application: the Development of Small-Molecule Protein-Protein Interaction Inhibitors
184(2)
Future Directions
186(7)
References
187(6)
Biomedical Applications of Proteomics
193(30)
Jean-Charles Sanchez
Yohann Coute
Laure Allard
Pierre Lescuyer
Denis F. Hochstrasser
Introduction
193(1)
The Application of Proteomics to Medicine
194(2)
Disease Diagnosis from Body Fluids
196(1)
Vascular Diseases
197(5)
Introduction
197(1)
Application of Proteomics to Vascular Diseases and Atherosclerosis
198(1)
Application of Proteomics to Cardiovascular Diseases
199(1)
Application of Proteomics to Cerebrovascular Disease
200(1)
Conclusion
201(1)
Neurodegenerative Disorders
202(4)
Brain Proteome
202(1)
Proteomic Profiling of Neurodegenerative Disorders
203(2)
Cerebrospinal Fluid Protein Markers
205(1)
Proteomics and Cancer
206(5)
Biomarker Discovery in Cancer Proteomics
207(1)
Tissues
207(1)
Primary and Established Cell Lines
208(1)
Proteomic Profiling in Oncology
209(1)
Surface-Enhanced Laser Desorption/Ionisation Time-of-Flight Mass Spectrometry
210(1)
Protein Microarrays
210(1)
Tissue Profiling by Matrix-Assisted Laser Desoprtioon/Ionisation Mass Spectrometry Imaging
210(1)
Use of Proteomics To Define the Tissue of Origin
211(1)
Conclusion
211(1)
Toxicopharmacology: the Example of Type 2 Diabetes
211(4)
Introduction to Diabetes
212(1)
Pathogenesis of Type 2 Diabetes
212(1)
Treatments of Type 2 Diabetes
213(1)
Proteomics for the Discovery of Treatment Targets for Type 2 Diabetes
213(2)
Current Limitations and Future Directions of Proteomics for Medicine
215(2)
Preanalytical Issues
215(1)
Analytical Aspects
216(1)
Postanalytical Aspects
217(1)
Present and Future Directions
217(6)
References
217(6)
Proteomics: Where to Next?
223(8)
Keith L. Williams
Denis F. Hochstrasser
Introduction
223(1)
The Relevance of -omics to Biology
224(1)
Technological Developments in Proteomics
225(2)
Characterising Modifications
226(1)
Global Tissue Analysis
226(1)
The Next Steps for Proteomics: Diagnostics and Drugs
227(2)
Diagnostics
228(1)
Drugs
228(1)
Conclusions
229(2)
References
229(2)
Index 231