Muutke küpsiste eelistusi

E-raamat: Pseudo-Complex General Relativity

Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 98,18 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book explores the role of singularities in general relativity (GR): The theory predicts that when a sufficient large mass collapses, no known force is able to stop it until all mass is concentrated at a point. The question arises, whether an acceptable physical theory should have a singularity, not even a coordinate singularity. The appearance of a singularity shows the limitations of the theory. In GR this limitation is the strong gravitational force acting near and at a super-massive concentration of a central mass. First, a historical overview is given, on former attempts to extend GR (which includes Einstein himself), all with distinct motivations. It will be shown that the only possible algebraic extension is to introduce pseudo-complex (pc) coordinates, otherwise for weak gravitational fields non-physical ghost solutions appear. Thus, the need to use pc-variables. We will see, that the theory contains a minimal length, with important consequences. After that, the pc-GR

is formulated and compared to the former attempts. A new variational principle is introduced, which requires in the Einstein equations an additional contribution. Alternatively, the standard variational principle can be applied, but one has to introduce a constraint with the same former results. The additional contribution will be associated to vacuum fluctuation, whose dependence on the radial distance can be approximately obtained, using semi-classical Quantum Mechanics. The main point is that pc-GR predicts that mass not only curves the space but also changes the vacuum structure of the space itself. In the following chapters, the minimal length will be set to zero, due to its smallness. Nevertheless, the pc-GR will keep a remnant of the pc-description, namely that the appearance of a term, which we may call "dark energy", is inevitable. The first application will be discussed in chapter 3, namely solutions of central mass distributions. For a non-rotating massive object it is

the pc-Schwarzschild solution, for a rotating massive object the pc-Kerr solution and for a charged massive object it will be the Reissner-Nordström solution. This chapter serves to become familiar on how to resolve problems in pc-GR and on how to interpret the results. One of the main consequences is, that we can eliminate the event horizon and thus there will be no black holes. The huge massive objects in the center of nearly any galaxy and the so-called galactic black holes are within pc-GR still there, but with the absence of an event horizon! Chapter 4 gives another application of the theory, namely the Robertson-Walker solution, which we use to model different outcomes of the evolution of the universe. Finally the capability of this theory to predict new phenomena is illustrated.

Mathematics of pc-GR.- Pseudo-complex GR.- Pc-Schwarzschild, Kerr and Reissner-Nordström.- Pc-Robertson-Walker Metric.- Observational verifications of pc-GR.- Neutron Stars within pc-GR.- PC-differential geometry.
1 Mathematics of Pseudo-complex General Relativity
1(14)
1.1 Definitions and Properties
1(8)
1.2 Calculus
9(5)
References
14(1)
2 Pseudo-complex General Relativity
15(40)
2.1 The Attempt by A. Einstein
16(1)
2.2 Caianiello's Observation
17(5)
2.3 Concerns Brought Forward by M. Born
22(1)
2.4 Hermitian Gravity
23(3)
2.5 The Approach in pc-GR
26(7)
2.6 Construction of Pseudo-complex General Relativity
33(5)
2.7 A Modification of the Variational Principle
38(15)
References
53(2)
3 Solutions for Central Masses: pc-Schwarzschild, pc-Kerr and pc-Reissner-Nordstrom
55(38)
3.1 Modified Variational Procedure in an 8-dimensional Space
55(3)
3.1.1 Isotropic and Anisotropic Fluids
57(1)
3.2 The pc-Schwarzschild Solution
58(18)
3.3 The pc-Kerr Solution
76(9)
3.4 The pc-Reissner-Nordstrom Solution
85(6)
References
91(2)
4 Pseudo-complex Robertson-Walker Metric
93(38)
4.1 Solving the Equations of Motion
102(11)
4.2 Some Consequences
113(9)
4.3 An Oscillating Universe
122(8)
4.3.1 The Adiabatic Expansion and Contraction of the Universe
127(3)
References
130(1)
5 Observational Verifications of pc-GR
131(52)
5.1 Motion of a Particle in a Circular Orbit: Orbital Frequency and Redshift
133(20)
5.1.1 Radial Dependence of the Angular Frequency and Stable Orbits
133(9)
5.1.2 Redshift for Schwarzschild- and Kerr-Type of Solutions
142(2)
5.1.3 Effective Potentials and Circular Orbits
144(8)
5.1.4 Galactic "Black-Holes" and Observational Verification by pc-GR
152(1)
5.2 Raytracing Method and the Imaging of the Accretion Disk
153(26)
5.2.1 Theoretical Background
154(17)
5.2.2 Predictions
171(8)
5.3 Conclusions
179(1)
References
180(3)
6 Neutron Stars Within the Pseudo-complex General Relativity
183(34)
6.1 Theoretical Background
185(18)
6.1.1 Interior Region
185(6)
6.1.2 Equation of State for Standard Matter
191(1)
6.1.3 Equation of State for the Λ-term
192(1)
6.1.4 Exterior Shell
193(2)
6.1.5 Boundary Conditions
195(1)
6.1.6 Energy Conditions
196(7)
6.2 Numerical Framework, Results and Discussions
203(10)
6.3 Resuming the Results Presented in This
Chapter
213(1)
References
214(3)
7 Pseudo-complex Differential Geometry
217(30)
7.1 A Short Introduction to Differential Geometry
218(13)
7.1.1 Topology
218(1)
7.1.2 Differential Manifolds
219(1)
7.1.3 Vectors and Tensors
220(3)
7.1.4 Metric and Curvature
223(8)
7.2 Pseudo-complex Differential Geometry
231(1)
7.2.1 Pseudo-complex Manifolds as Product Manifolds
231(1)
7.3 Pseudo-complex Tangent and Cotangent Spaces
232(7)
7.3.1 Real Tangent and Cotangent Space of a Pseudo-complex Manifold
232(2)
7.3.2 Pseudo-complexified Tangent and Cotangent Space
234(5)
7.4 Metric
239(1)
7.5 Connection and Curvature
240(2)
7.6 Pseudo-complex General Relativity
242(2)
References
244(3)
Index 247
Prof. Dr. Peter O. Hess, Mexico

Dr. Mirko Schäfer, Frankfurt, Germany

Prof. Dr. Dr. h. c. mult. Walter Greiner, Frankfurt, Germany