Muutke küpsiste eelistusi

E-raamat: Pseudo-Hermitian Random Matrices

  • Formaat: EPUB+DRM
  • Ilmumisaeg: 20-Jun-2024
  • Kirjastus: Springer International Publishing AG
  • Keel: eng
  • ISBN-13: 9783031602948
  • Formaat - EPUB+DRM
  • Hind: 135,84 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: EPUB+DRM
  • Ilmumisaeg: 20-Jun-2024
  • Kirjastus: Springer International Publishing AG
  • Keel: eng
  • ISBN-13: 9783031602948

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book is a comprehensive guide to pseudo-Hermitian random matrices, their properties, and their role in many models that are relevant to physical processes. The book starts by showing how the concept of pseudo-Hermiticity emerged from studies of PT-symmetric systems which aroused the interest of the random matrix theory community. The chapters that follow discuss the consequences of the pseudo-Hermitian condition to the eigen-decomposition of non-Hermitian matrices, and an investigation of pseudo-Hermitian random matrices in tridiagonal form, discussing the scenario with real eigenvalues, and the appearance of complex eigenvalues generated by unbound and non-positive metrics. Subsequently, the author introduces pseudo-Hermitian Gaussian matrices and their properties including characteristic polynomials, and statistical properties of their eigenvalues. Finally, in the last chapter, the time invariance of the metric is upended and a pseudo-Hermitian model with a time dependent metricis constructed to discuss the time evolution of entangled states.

Chapter 1 Introduction.
Chapter 2 The pseudo-Hermitian condition.
Chapter 3 Pseudo-Hermitian b-Hermite ensemble with real eigenvalues1.
Chapter 4 Pseudo-Hermitian -Hermite ensemble with an unbound metric2.
Chapter 5 Pseudo-Hermitian -Hermite ensemble with an unbound metric.
Chapter 6 Pseudo-Hermitian b-Laguerre ensemble with real eigenvalues3.
Chapter 7 Pseudo-Hermitian b-Laguerre ensemble with unbound metric.
Chapter 8 Pseudo-Hermitian -Laguerre ensemble with non-positive metric.
Chapter 9 The pseudo-Hermitian -Jacobi ensemble4.
Chapter 10 Pseudo-Hermitian Gaussian matrices5.
Chapter 11 Pseudo-Hermitian anti-Hermitian Gaussian matrices6.
Chapter 12 Average characteristic polynomials7.
Chapter 13 Spectral properties of pseudo-Hermitian matrices8.
Chapter 14 Eigenvalues as quasi-particles.
Chapter 15 Entanglement of pseudo-Hermitian random states9.

Mauricio Porto Pato is a Senior Professor at the University of São Paulo with a large experience in the field of random matrices theory and applications. In the early 90's, in a collaboration with the nuclear physicist M. S. Hussein, he began a study of random matrices that resulted in the construction of an ensemble to be applied to a situation of partial conservation of a quantum number. The model was then, successfully, applied to the description of isospin data. In a collaboration with O. Bohigas, another important contribution of him to be highlighted, was the formalism to deal with missing levels in correlated spectra, a study that evolved from his work with the experimentalist G. E. Mitchell. About ten years ago, his interest moved from Hermitian to non-Hermitian operators and this led to his involvement with the studies of the class of pseudo-Hermitian matrices associated to PT-symmetric systems, that is, systems invariant under parity and time-reversal transformations. This investigation started with the introduction of the pseudo-Hermiticity condition in the sparse tridiagonal matrices of the so-called beta-ensembles of the random matrix theory. Next, the pseudo-Hermiticity condition was extended to the standard Gaussian matrices with the creation of the pseudo-Hermitian Gaussian ensembles. All this effort, along a decade, comprises about one dozen of works among articles and thesis.