Muutke küpsiste eelistusi

E-raamat: Pulse Doppler Radar: Principles, technology, applications

(Cranfield University, UK)
  • Formaat: PDF+DRM
  • Sari: Radar, Sonar and Navigation
  • Ilmumisaeg: 01-Mar-2013
  • Kirjastus: SciTech Publishing Inc
  • Keel: eng
  • ISBN-13: 9781613531518
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 253,50 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: PDF+DRM
  • Sari: Radar, Sonar and Navigation
  • Ilmumisaeg: 01-Mar-2013
  • Kirjastus: SciTech Publishing Inc
  • Keel: eng
  • ISBN-13: 9781613531518
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book is a practitioner's guide to all aspects of pulse Doppler radar. It concentrates on airborne military radar systems since they are the most used, most complex, and most interesting of the pulse Doppler radars; however, ground-based and non-military systems are also included.



It covers the fundamental science, signal processing, hardware issues, systems design and case studies of typical systems. It will be a useful resource for engineers of all types (hardware, software and systems), academics, post-graduate students, scientists in radar and radar electronic warfare sectors and military staff. Case studies add interest and credibility by illustrating how and where the ideas presented within the book work in real life.



This book is an important reference providing complete and up-to-date coverage of a significant area of radar technology and is an important source for engineers and academics who lecture this subject.



Key features include:







Methods of selection of precise PRF values PRF schedule design Strategies to combat the ghosting problem Minimize range/velocity blindness and minimize dwell time Case studies on generic radar types such as airborne fire control radar, airborne early warningradar, active radar missile seekers and air defense radars
Preface xi
Author Acknowledgements xiii
Publisher Acknowledgements xiv
PART I Basic Concepts
1 Historical Justification for Pulse Doppler Radar
3(4)
2 Radar Detection Performance
7(18)
2.1 Noise-Limited Radar Range Equation
7(3)
2.2 Detections in Noise
10(4)
2.3 Minimum Detectable Signal, Smin
14(2)
2.4 Processing Gain via Pulse Integration
16(4)
2.5 Radar Cross Section
20(5)
3 Pulsed Radar
25(18)
3.1 Introduction to Pulse Parameters
25(1)
3.2 Peak and Average Power
26(1)
3.3 Pulse Delay Ranging
26(2)
3.4 Low PRF Radar
28(1)
3.5 Spectrum of Pulsed Radar
29(2)
3.6 Matched Reception
31(4)
3.7 Range Resolution
35(2)
3.8 Range Accuracy
37(1)
3.9 Pulse Compression
38(5)
4 Doppler Sensing Radar
43(12)
4.1 The Doppler Effect
43(3)
4.2 Doppler Discrimination
46(1)
4.3 Platform Motion Compensation
47(1)
4.4 Doppler Blindness
48(1)
4.5 Continuous Wave Radar
49(3)
4.6 Application to Pulsed Radar
52(3)
5 The Ambiguity Function
55(6)
5.1 Ambiguity Diagrams
55(5)
5.2 Peak and Integrated Sidelobe Levels
60(1)
6 Clutter
61(28)
6.1 Concepts of Clutter
61(1)
6.2 Backscatter Coefficient
62(5)
6.3 Statistical Models of Clutter
67(7)
6.4 Clutter for an Airborne Radar
74(5)
6.5 Clutter Decorrelation
79(2)
6.6 Low Pulse Repetition Frequency Radar Response to Clutter
81(1)
6.7 Clutter-Limited Detection Range
82(3)
6.8 Clutter for a Surface-Based Radar
85(1)
6.9 Volume Clutter
86(3)
7 Pulse Doppler Processing
89(42)
7.1 The Processing Chain
89(1)
7.2 MTI Rejection of MBC
90(14)
7.3 FFT Processing
104(15)
7.4 Constant False Alarm Rate Detection
119(12)
8 Radar Hardware
131(68)
8.1 Introduction
131(1)
8.2 Radar Transmitters
132(23)
8.3 Frequency Synthesizers
155(6)
8.4 Radar Receivers
161(17)
8.5 Radar Antennas and Arrays
178(16)
References
194(5)
PART IIA High Pulse Repetition Frequency Pulse Doppler Radar
9 High Pulse Repetition Frequency Pulse Doppler Radar
199(28)
9.1 Introduction
199(2)
9.2 PRF Selection for Unambiguous Doppler/Velocity
201(7)
9.3 Timing Aspects of High PRF
208(6)
9.4 High PRF Radar Response to Clutter
214(8)
9.5 Surface-Based High PRF Radars
222(3)
9.6 Summary of the Characteristics of High PRF
225(2)
10 Frequency Modulation Ranging in High PRF
227(22)
10.1 Frequency Modulation Ranging in Continuous Wave Systems
227(11)
10.2 FM Ranging in Pulsed Systems
238(8)
References
246(3)
PART IIB Medium Pulse Repetition Frequency Pulse Doppler Radar
11 Introduction to Medium Pulse Repetition Frequency Radar
249(16)
11.1 Basic Concepts
249(2)
11.2 Ambiguities
251(4)
11.3 Medium PRF Radar Response to Surface Clutter
255(7)
11.4 Blindness in Medium PRF Radar
262(1)
11.5 Multiple PRF Schedules
263(2)
12 Factors Affecting the Choice of PRFs
265(42)
12.1 Decodability
265(11)
12.2 Blindness
276(6)
12.3 PRF Limits
282(3)
12.4 Ghosting
285(12)
12.5 Additional Techniques to Combat Ghosting
297(10)
13 Medium Pulse Repetition Frequency Schedule Design
307(16)
13.1 Selection of M and N
307(3)
13.2 Comparison between Schedules
310(8)
13.3 Other Waveform Design Issues
318(5)
14 Detection Performance
323(16)
14.1 Noise-Limited Detection
323(8)
14.2 Clutter-Limited Detection
331(8)
15 Methods of Pulse Repetition Frequency Selection
339(24)
15.1 A Brief Review of the Pulse Repetition Frequency Selection Requirements
339(1)
15.2 PRF Selection for Maximum Visibility
340(1)
15.3 Major-Minor Method of PRF Selection
341(3)
15.4 M:N Method of PRF Selection
344(2)
15.5 Exhaustive Search
346(2)
15.6 PRF Selection Using a Neural Network
348(1)
15.7 PRF Selection Using Evolutionary Algorithms
348(8)
15.8 Concluding Remarks
356(1)
References
357(6)
PART III Case Studies
16 Airborne Fire Control Radar
363(8)
16.1 Introduction
363(1)
16.2 Setting the Scene
364(3)
16.3 Medium PRF Mode
367(4)
17 Airborne Early Warning Radar
371(6)
17.1 Introduction
371(2)
17.2 AEW Radar for Fleet Protection
373(1)
17.3 AEW Radar for Long-Range Air Surveillance
374(3)
18 Active Radar Missile Seekers
377(12)
18.1 Introduction
377(1)
18.2 Radar-Based Missile Seeker Applications
378(4)
18.3 Radar Seeker as a Subsystem
382(3)
18.4 Hypothetical Air-to-Air Active Radar Seeker Parameters
385(4)
19 Ground-Based Air Defense Radar
389(7)
19.1 Introduction
389(1)
19.2 Differences in the Clutter Situation between Airborne and Ground-Based Pulse Doppler Radars
390(1)
19.3 Three-Dimensional Radars
391(3)
19.4 Parameters of a Hypothetical Short-Range Ground-Based Air Surveillance Radar
394(2)
References 396(1)
Closing Remarks 397(2)
Index 399
Clive Alabaster is a Lecturer in the Department of Informatics and Systems Engineering at Cranfield University, UK. He received his Ph.D. in Physics from Cranfield in 2004.



In 1985, after receiving his BSc, he joined GEC-Marconi in the microwave design group of the airborne radar division. He worked as a design and development engineer on the microwave synthesizer and front end receiver design of an airborne intercept radar fitted to a fast-strike aircraft. In 1992 he worked for Serco as a lecturer in radar and microwave engineering at the School of Electrical and Aeronautical Engineering, Arborfield Garrison, UK where he taught technicians of the Royal Electrical and Mechanical Engineers Corps.



Alabaster joined the academic staff at Cranfield University in 1998. In 2001 he established a research program for medium PRF pulse Doppler waveforms, which has won several applied research contracts with industry and defense organizations.