Muutke küpsiste eelistusi
  • Formaat - EPUB+DRM
  • Hind: 135,23 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This research monograph provides the means to learn the theory and practice of graph and network analysis using the Python programming language. The social network analysis techniques, included, will help readers to efficiently analyze social data from Twitter, Facebook, LiveJournal, GitHub and many others at three levels of depth: ego, group, and community. They will be able to analyse militant and revolutionary networks and candidate networks during elections. For instance, they will learn how the Ebola virus spread through communities.

Practically, the book is suitable for courses on social network analysis in all disciplines that use social methodology. In the study of social networks, social network analysis makes an interesting interdisciplinary research area, where computer scientists and sociologists bring their competence to a level that will enable them to meet the challenges of this fast-developing field. Computer scientists have the knowledge to parse and process data while sociologists have the experience that is required for efficient data editing and interpretation. Social network analysis has successfully been applied in different fields such as health, cyber security, business, animal social networks, information retrieval, and communications. 


1 Theoretical Concepts of Network Analysis
1(32)
1.1 Sociological Meaning of Network Relations
1(2)
1.2 Network Measurements
3(6)
1.2.1 Network Connection
3(1)
1.2.2 Transitivity
4(1)
1.2.3 Multiplexity
4(2)
1.2.4 Homophily
6(1)
1.2.5 Dyads and Mutuality
7(1)
1.2.6 Balance and Triads
7(2)
1.2.7 Reciprocity
9(1)
1.3 Network Distribution
9(9)
1.3.1 Distance Between Two Nodes
9(1)
1.3.2 Degree Centrality
10(1)
1.3.3 Closeness Centrality
11(1)
1.3.4 Betweenness Centrality
12(2)
1.3.5 Eigenvector Centrality
14(1)
1.3.6 PageRank
15(1)
1.3.7 Geodesic Distance and Shortest Path
16(1)
1.3.8 Eccentricity
16(1)
1.3.9 Density
17(1)
1.4 Network Segmentation
18(6)
1.4.1 Cohesive Subgroups
19(1)
1.4.2 Cliques
19(1)
1.4.3 K-Cores
20(1)
1.4.4 Clustering Coefficient
20(2)
1.4.5 Core/Periphery
22(1)
1.4.6 Blockmodels
23(1)
1.4.7 Hierarchical Clustering
23(1)
1.5 Recent Developments in Network Analysis
24(5)
1.5.1 Community Detection
24(2)
1.5.2 Link Prediction
26(1)
1.5.3 Spatial Networks
27(1)
1.5.4 Protein-Protein Interaction Networks
28(1)
1.5.5 Recommendation Systems
28(1)
1.6 iGraph
29(4)
2 Network Basics
33(16)
2.1 What Is a Network?
33(1)
2.2 Types of Networks
33(1)
2.3 Properties of Networks
34(1)
2.4 Network Measures
35(1)
2.5 NetworkX
36(1)
2.6 Installation
37(3)
2.7 Matrices
40(1)
2.8 Types of Matrices in Social Networks
41(5)
2.8.1 Adjacency Matrix
41(1)
2.8.2 Edge List Matrix
42(2)
2.8.3 Adjacency List
44(2)
2.8.4 Numpy Matrix
46(1)
2.8.5 Sparse Matrix
46(1)
2.9 Basic Matrix Operations
46(1)
2.10 Data Visualization
47(2)
3 Graph Theory
49(16)
3.1 Origins of Graph Theory
49(2)
3.2 Graph Basics
51(1)
3.3 Vertices
52(1)
3.4 Types of Graphs
53(3)
3.5 Graph Traversal
56(8)
3.5.1 Depth-First Traversal (DFS)
57(2)
3.5.2 Breadth-First Traversal (BFS)
59(2)
3.5.3 Dijkstra's Algorithm
61(3)
3.6 Operations on Graphs
64(1)
Reference
64(1)
4 Social Networks
65(14)
4.1 Social Networks
65(1)
4.2 Properties of a Social Network
66(3)
4.2.1 Scale-Free Networks
66(1)
4.2.2 Small-World Networks
67(2)
4.2.3 Network Navigation
69(1)
4.2.4 Dunbar's Number
69(1)
4.3 Data Collection in Social Networks
69(1)
4.4 Six Degrees of Separation
70(1)
4.5 Online Social Networks
71(1)
4.6 Online Social Data Collection
71(1)
4.7 Data Sampling
72(2)
4.8 Social Network Analysis
74(1)
4.9 Social Network Analysis vs. Link Analysis
75(1)
4.10 Historical Development
75(2)
4.11 Importance of Social Network Analysis
77(1)
4.12 Social Network Analysis Modeling Tools
77(2)
References
78(1)
5 Node-Level Analysis
79(34)
5.1 Ego-Network Analysis
79(13)
5.2 Identifying Influential Individuals in the Network
92(11)
5.2.1 Degree Centrality
92(5)
5.2.2 Closeness Centrality
97(2)
5.2.3 Betweenness Centrality
99(2)
5.2.4 Eigenvector Centrality
101(2)
5.3 PageRank
103(6)
5.4 Neighbors
109(1)
5.5 Bridges
110(1)
5.6 Which Centrality Algorithm to Use?
110(3)
6 Group-Level Analysis
113(34)
6.1 Cohesive Subgroups
113(1)
6.2 Cliques
114(3)
6.3 Clustering Coefficient
117(2)
6.4 Triadic Analysis
119(3)
6.5 Structural Holes
122(1)
6.6 Brokerage
122(3)
6.7 Transitivity
125(4)
6.8 Coreness
129(1)
6.9 Overlapping Communities
129(1)
6.10 Dynamic Community Finding
130(1)
6.11 M-Slice
131(1)
6.12 K-Cores
131(1)
6.13 Community Detection
131(8)
6.13.1 Graph Partitioning
132(1)
6.13.2 Hierarchical Clustering
132(7)
6.14 Blockmodels
139(7)
6.14.1 Modularity Optimization
145(1)
6.15 The Louvain Method
146(1)
Reference
146(1)
7 Network-Level Analysis
147(18)
7.1 Components/Isolates
147(1)
7.2 Core/Periphery
147(1)
7.3 Density
148(1)
7.4 Shortest Path
149(1)
7.5 Reciprocity
150(1)
7.6 Affiliation Networks
151(1)
7.7 Two-Mode Networks
152(2)
7.8 Homophily
154(11)
8 Information Diffusion in Social Networks
165(20)
8.1 Diffusion
165(1)
8.2 Contagion
166(1)
8.3 Diffusion of Innovation
167(1)
8.4 Adoption of Innovations
168(1)
8.5 Diffusion of Innovation Models
168(1)
8.6 Two-Step Flow Model
169(1)
8.7 Social Contagion
170(1)
8.8 Adoption Rate
171(1)
8.9 Adoption Categories and Thresholds
171(1)
8.10 Amount of Exposure
171(2)
8.11 Adopters and Adoption
173(2)
8.12 Critical Mass
175(2)
8.13 Epidemics
177(1)
8.14 Epidemic Models
178(1)
8.15 Deterministic Compartmental Models
178(1)
8.16 SIR Model
178(2)
8.17 Properties of the SIR Model
180(5)
Appendices
185(16)
Appendix A Python 3.x Quick Syntax Guide
185(6)
Python Syntax
186(1)
Variables
186(1)
Numbers
187(1)
Strings
187(1)
Lists
187(1)
Tuples
188(1)
Dictionaries
188(1)
Conditionals
189(1)
Loops
189(1)
Python Functions
189(1)
File Handling
190(1)
Exception Handling
191(1)
Modules
191(1)
Classes
191(1)
Appendix B NetworkX Tutorial
191(10)
Graph Types
193(1)
Nodes
193(1)
Edges
194(1)
Directed Graphs
195(1)
Attributed Graphs
195(1)
Weighted Graphs
196(1)
Multigraphs
196(1)
Classic Graph Operations
196(1)
Graph Generators
197(1)
Basic Network Analysis
198(1)
Centrality Measures
199(1)
Drawing Graphs
199(1)
Algorithms Package (NetworkX Algorithms)
199(1)
Reading and Writing
200(1)
References 201