|
1 Getting Started with Scientific Python |
|
|
1 | (34) |
|
1.1 Installation and Setup |
|
|
3 | (1) |
|
|
4 | (9) |
|
1.2.1 Numpy Arrays and Memory |
|
|
6 | (3) |
|
|
9 | (1) |
|
|
10 | (2) |
|
1.2.4 Numpy Masked Arrays |
|
|
12 | (1) |
|
1.2.5 Numpy Optimizations and Prospectus |
|
|
12 | (1) |
|
|
13 | (3) |
|
1.3.1 Alternatives to Matplotlib |
|
|
15 | (1) |
|
1.3.2 Extensions to Matplotlib |
|
|
16 | (1) |
|
|
16 | (4) |
|
|
18 | (2) |
|
|
20 | (1) |
|
|
21 | (4) |
|
|
21 | (2) |
|
|
23 | (2) |
|
|
25 | (2) |
|
1.8 Interfacing with Compiled Libraries |
|
|
27 | (1) |
|
1.9 Integrated Development Environments |
|
|
28 | (1) |
|
1.10 Quick Guide to Performance and Parallel Programming |
|
|
29 | (3) |
|
|
32 | (3) |
|
|
32 | (3) |
|
|
35 | (66) |
|
|
35 | (15) |
|
2.1.1 Understanding Probability Density |
|
|
36 | (1) |
|
|
37 | (5) |
|
2.1.3 Continuous Random Variables |
|
|
42 | (3) |
|
2.1.4 Transformation of Variables Beyond Calculus |
|
|
45 | (2) |
|
2.1.5 Independent Random Variables |
|
|
47 | (2) |
|
2.1.6 Classic Broken Rod Example |
|
|
49 | (1) |
|
|
50 | (4) |
|
|
53 | (1) |
|
2.3 Conditional Expectation as Projection |
|
|
54 | (6) |
|
|
60 | (1) |
|
2.4 Conditional Expectation and Mean Squared Error |
|
|
60 | (4) |
|
2.5 Worked Examples of Conditional Expectation and Mean Square Error Optimization |
|
|
64 | (14) |
|
|
64 | (4) |
|
|
68 | (2) |
|
|
70 | (3) |
|
|
73 | (1) |
|
|
74 | (3) |
|
|
77 | (1) |
|
|
78 | (5) |
|
2.6.1 Information Theory Concepts |
|
|
79 | (2) |
|
2.6.2 Properties of Information Entropy |
|
|
81 | (1) |
|
2.6.3 Kullback-Leibler Divergence |
|
|
82 | (1) |
|
2.7 Moment Generating Functions |
|
|
83 | (4) |
|
2.8 Monte Carlo Sampling Methods |
|
|
87 | (8) |
|
2.8.1 Inverse CDF Method for Discrete Variables |
|
|
88 | (2) |
|
2.8.2 Inverse CDF Method for Continuous Variables |
|
|
90 | (2) |
|
|
92 | (3) |
|
|
95 | (6) |
|
2.9.1 Markov's Inequality |
|
|
96 | (1) |
|
2.9.2 Chebyshev's Inequality |
|
|
97 | (1) |
|
2.9.3 Hoeffding's Inequality |
|
|
98 | (1) |
|
|
99 | (2) |
|
|
101 | (96) |
|
|
101 | (1) |
|
3.2 Python Modules for Statistics |
|
|
102 | (2) |
|
3.2.1 Scipy Statistics Module |
|
|
102 | (1) |
|
3.2.2 Sympy Statistics Module |
|
|
103 | (1) |
|
3.2.3 Other Python Modules for Statistics |
|
|
104 | (1) |
|
|
104 | (7) |
|
3.3.1 Almost Sure Convergence |
|
|
105 | (2) |
|
3.3.2 Convergence in Probability |
|
|
107 | (2) |
|
3.3.3 Convergence in Distribution |
|
|
109 | (1) |
|
|
110 | (1) |
|
3.4 Estimation Using Maximum Likelihood |
|
|
111 | (14) |
|
3.4.1 Setting Up the Coin Flipping Experiment |
|
|
113 | (10) |
|
|
123 | (2) |
|
3.5 Hypothesis Testing and P-Values |
|
|
125 | (16) |
|
3.5.1 Back to the Coin Flipping Example |
|
|
126 | (4) |
|
3.5.2 Receiver Operating Characteristic |
|
|
130 | (2) |
|
|
132 | (1) |
|
|
133 | (7) |
|
3.5.5 Testing Multiple Hypotheses |
|
|
140 | (1) |
|
|
141 | (3) |
|
|
144 | (14) |
|
3.7.1 Extensions to Multiple Covariates |
|
|
154 | (4) |
|
|
158 | (6) |
|
|
164 | (7) |
|
|
171 | (5) |
|
3.10.1 Parametric Bootstrap |
|
|
175 | (1) |
|
|
176 | (4) |
|
3.12 Nonparametric Methods |
|
|
180 | (17) |
|
3.12.1 Kernel Density Estimation |
|
|
180 | (3) |
|
|
183 | (5) |
|
3.12.3 Nonparametric Regression Estimators |
|
|
188 | (1) |
|
3.12.4 Nearest Neighbors Regression |
|
|
189 | (4) |
|
|
193 | (1) |
|
3.12.6 Curse of Dimensionality |
|
|
194 | (2) |
|
|
196 | (1) |
|
|
197 | (78) |
|
|
197 | (1) |
|
4.2 Python Machine Learning Modules |
|
|
197 | (4) |
|
|
201 | (24) |
|
4.3.1 Introduction to Theory of Machine Learning |
|
|
203 | (4) |
|
4.3.2 Theory of Generalization |
|
|
207 | (2) |
|
4.3.3 Worked Example for Generalization/Approximation Complexity |
|
|
209 | (6) |
|
|
215 | (4) |
|
|
219 | (3) |
|
|
222 | (3) |
|
|
225 | (9) |
|
|
232 | (2) |
|
|
234 | (6) |
|
4.5.1 Generalized Linear Models |
|
|
239 | (1) |
|
|
240 | (10) |
|
|
244 | (4) |
|
|
248 | (2) |
|
4.7 Support Vector Machines |
|
|
250 | (6) |
|
|
253 | (3) |
|
4.8 Dimensionality Reduction |
|
|
256 | (8) |
|
4.8.1 Independent Component Analysis |
|
|
260 | (4) |
|
|
264 | (4) |
|
|
268 | (7) |
|
|
268 | (3) |
|
|
271 | (2) |
|
|
273 | (2) |
Index |
|
275 | |