Muutke küpsiste eelistusi

E-raamat: QoE Management in Wireless Networks

  • Formaat - PDF+DRM
  • Hind: 55,56 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This SpringerBrief presents research results on QoE management schemes for mobile services, including user services, and resource allocation. Along with a review of the research literature, it offers a data-driven architecture for personalized QoE management in wireless networks. The primary focus is on introducing efficient personalized character extraction mechanisms, e.g., context-aware Bayesian graph model, and cooperative QoE management mechanisms. Moreover, in order to demonstrate in the effectiveness of the QoE model, a QoE measurement platform is described and its collected data examined. The brief concludes with a discussion of future research directions. The example mechanisms and the data-driven architecture provide useful insights into the designs of QoE management, and motivate a new line of thinking for users" satisfaction in future wireless networks. 

Introduction.- Background and Literature Survey.- Architecture of Data-driven Personalized QoE Management.- QoE Oriented Resource Allocation in Wireless Networks.- Implementation and Demonstration of QoE Measurement Platform.- Conclusion.
1 Introduction
1(6)
1.1 Mobile Technology Evolution
1(1)
1.2 Motivation for Personalized QoE Management
2(5)
References
4(3)
2 Background and Literature Survey
7(14)
2.1 QoE Definition
7(1)
2.2 Influencing Factors
8(2)
2.3 Assessment Method
10(2)
2.3.1 Subjective Assessment
11(1)
2.3.2 Objective Assessment
11(1)
2.3.3 Hybrid Assessment
12(1)
2.4 QoE Models
12(2)
2.4.1 Mathematic Model
12(1)
2.4.2 Machine Learning Model
13(1)
2.5 QoE Management and Control
14(1)
2.6 Challenges of QoE in 5G
15(3)
2.6.1 Challenges from Various Communication Scenarios
16(1)
2.6.2 Challenges Due to Emerging Applications
16(1)
2.6.3 Challenges Related to Big Data
17(1)
2.7 Summary
18(3)
References
18(3)
3 Architecture of Data-Driven Personalized QoE Management
21(12)
3.1 Introduction
21(1)
3.2 Framework of Data-Driven Personalized QoE Management
22(4)
3.2.1 Basic Requirements
22(1)
3.2.2 Training Module
22(3)
3.2.3 Control Module
25(1)
3.3 Personalized Character Extraction: User-Service Preference
26(4)
3.3.1 Bayesian Graphic Model (BGM)
26(2)
3.3.2 Context Aware Matrix Factorization Model
28(2)
3.4 Personalized QoE Model and Example User Case
30(2)
3.5 Summary
32(1)
References
32(1)
4 QoE-Oriented Resource Allocation in Wireless Networks
33(12)
4.1 Background
33(3)
4.1.1 QoS-Based Radio Resource Management Strategies
34(1)
4.1.2 QoE-Based Radio Resource Management Strategies
34(1)
4.1.3 Energy Efficiency-Based Radio Resource Management Strategies
35(1)
4.2 Traditional QoE-Based Resource Allocation Mechanism
36(5)
4.2.1 QoE Metric Model
36(2)
4.2.2 System Model
38(1)
4.2.3 Problem Formulation
39(1)
4.2.4 Resource Allocation Strategy
39(1)
4.2.5 Simulation and Analysis
39(2)
4.3 Personalized QoE-Based Resource Allocation Mechanism
41(2)
4.4 Summary
43(2)
References
43(2)
5 Implementation and Demonstration of QoE Measurement Platform
45(14)
5.1 Introduction
45(1)
5.2 Related Work
45(3)
5.2.1 Measurement Under Commercial Network Environment
45(1)
5.2.2 Measurement Under Laboratory Network Environment
46(1)
5.2.3 Measurement Under Simulation Network Environment
47(1)
5.3 Design of Subjective Measurement
48(2)
5.3.1 QoE Related Factors
49(1)
5.4 Platform Infrastructure on Streaming Media Application Scenario
50(2)
5.4.1 Supporting System Architecture
50(1)
5.4.2 Functional Modules
51(1)
5.5 Measurement Procedure
52(4)
5.5.1 Crowdsourcing
52(1)
5.5.2 Measurement Description
53(1)
5.5.3 Measurement Result
53(3)
5.6 Summary
56(3)
References
56(3)
6 Conclusion
59(1)
6.1 Conclusion Remarks
59(1)
6.2 Future Work
60