Muutke küpsiste eelistusi

E-raamat: QoS Prediction in Cloud and Service Computing: Approaches and Applications

  • Formaat - PDF+DRM
  • Hind: 55,56 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book offers a systematic and practical overview of Quality of Service prediction in cloud and service computing. Intended to thoroughly prepare the reader for research in cloud performance, the book first identifies common problems in QoS prediction and proposes three QoS prediction models to address them. Then it demonstrates the benefits of QoS prediction in two QoS-aware research areas. Lastly, it collects large-scale real-world temporal QoS data and publicly releases the datasets, making it a valuable resource for the research community. The book will appeal to professionals involved in cloud computing and graduate students working on QoS-related problems. 

1. Introduction.- 2. Neighborhood-Based QoS Prediction.- 3. Time-Aware
Model-Based QoS Prediction.- 4. Online QoS Prediction.- 5. QoS-AwareWeb
Service Searching.- 6. QoS-Aware Byzantine Fault Tolerance.- 7. Conclusion
and Discussion.
Yilei Zhang received his PhD in Computer Science from the Chinese University of Hong Kong. His industry-specific experience in cloud and big data spans several years as an IT professional. His research interests include big data, service computing and cloud computing. He has served as a reviewer for a number of international journals as well as conferences including TSE, TR, TSC, WWW, WSDM, KDD, ISSRE, etc. He received the best student paper award at the ICWS 2010.









Michael R. Lyu received his PhD in Computer Science from the University of California, Los Angeles. He is currently a Professor at the Chinese University of Hong Kongs Computer Science and Engineering Department. He has published 450 peer-reviewed journal and conference papers. His research interests include software reliability engineering, distributed systems, fault-tolerant computing, service computing, multimedia information retrieval, and machine learning. He was named as the IEEE Reliability Society Engineer of the Year in 2010. He is a fellow of the IEEE, ACM and AAAS.