Foreword |
|
ix | |
Introduction and Preface to the Reader |
|
xi | |
Notations |
|
xiii | |
|
Chapter 1 Quadratic irrationals |
|
|
1 | (24) |
|
1.1 Quadratic irrationals, quadratic number fields and discriminants |
|
|
1 | (6) |
|
|
7 | (9) |
|
1.3 Reduced quadratic irrationals |
|
|
16 | (5) |
|
1.4 Two short tables of class numbers |
|
|
21 | (4) |
|
Chapter 2 Continued fractions |
|
|
25 | (38) |
|
2.1 General theory of continued fractions |
|
|
25 | (13) |
|
2.2 Continued fractions of quadratic irrationals I: General theory |
|
|
38 | (12) |
|
2.3 Continued fractions of quadratic irrationals II: Special types |
|
|
50 | (13) |
|
Chapter 3 Quadratic residues and Gauss sums |
|
|
63 | (36) |
|
3.1 Elementary theory of power residues |
|
|
63 | (4) |
|
3.2 Gauss and Jacobi sums |
|
|
67 | (5) |
|
3.3 The quadratic reciprocity law |
|
|
72 | (7) |
|
|
79 | (3) |
|
3.5 Kronecker and quadratic symbols |
|
|
82 | (17) |
|
Chapter 4 L-series and Dirichlet's prime number theorem |
|
|
99 | (16) |
|
4.1 Preliminaries and some elementary cases |
|
|
99 | (3) |
|
4.2 Multiplicative functions |
|
|
102 | (4) |
|
4.3 Dirichlet L-functions and proof of Dirichlet's theorem |
|
|
106 | (6) |
|
4.4 Summation of L-series |
|
|
112 | (3) |
|
Chapter 5 Quadratic orders |
|
|
115 | (76) |
|
5.1 Lattices and orders in quadratic number fields |
|
|
115 | (6) |
|
5.2 Units in quadratic orders |
|
|
121 | (8) |
|
5.3 Lattices and (invertible) fractional ideals in quadratic orders |
|
|
129 | (3) |
|
5.4 Structure of ideals in quadratic orders |
|
|
132 | (8) |
|
5.5 Class groups and class semigroups |
|
|
140 | (7) |
|
5.6 Ambiguous ideals and ideal classes |
|
|
147 | (13) |
|
5.7 An application: Some binary Diophantine equations |
|
|
160 | (14) |
|
5.8 Prime ideals and multiplicative ideal theory |
|
|
174 | (5) |
|
5.9 Class groups of quadratic orders |
|
|
179 | (12) |
|
Chapter 6 Binary quadratic forms |
|
|
191 | (66) |
|
6.1 Elementary definitions and equivalence relations |
|
|
191 | (8) |
|
6.2 Representation of integers |
|
|
199 | (11) |
|
|
210 | (3) |
|
|
213 | (8) |
|
|
221 | (19) |
|
6.6 Ternary quadratic forms |
|
|
240 | (8) |
|
|
248 | (9) |
|
Chapter 7 Cubic and biquadratic residues |
|
|
257 | (64) |
|
7.1 The cubic Jacobi symbol |
|
|
257 | (6) |
|
7.2 The cubic reciprocity law |
|
|
263 | (8) |
|
7.3 The biquadratic Jacobi symbol |
|
|
271 | (8) |
|
7.4 The biquadratic reciprocity law |
|
|
279 | (10) |
|
7.5 Rational biquadratic reciprocity laws |
|
|
289 | (17) |
|
7.6 A biquadratic class group character and applications |
|
|
306 | (15) |
|
|
321 | (38) |
|
8.1 The analytic class number formula |
|
|
322 | (10) |
|
8.2 L-functions of quadratic orders |
|
|
332 | (8) |
|
8.3 Ambiguous classes and classes of order divisibility by 4 |
|
|
340 | (5) |
|
8.4 Discriminants with cyclic 2-class group: Divisibility by 8 and 16 |
|
|
345 | (14) |
|
Appendix A Review of elementary algebra and number theory |
|
|
359 | (40) |
|
A.1 Fundamentals of group theory |
|
|
359 | (3) |
|
A.2 Fundamentals of ring theory |
|
|
362 | (3) |
|
A.3 Elementary arithmetic in Z |
|
|
365 | (7) |
|
|
372 | (3) |
|
A.5 Finite abelian groups |
|
|
375 | (5) |
|
A.6 Prime residue class groups |
|
|
380 | (4) |
|
A.7 Roots of unity and characters of finite abelian groups |
|
|
384 | (5) |
|
A.8 Factorization in integral domains |
|
|
389 | (5) |
|
|
394 | (5) |
|
Appendix B Some results from analysis |
|
|
399 | (8) |
|
B.1 Notational conventions and results from complex analysis |
|
|
399 | (2) |
|
B.2 Further analytic tools |
|
|
401 | (6) |
Bibliography |
|
407 | (4) |
List of Symbols |
|
411 | (2) |
Subject Index |
|
413 | |