Muutke küpsiste eelistusi

E-raamat: Quadratic Vector Equations on Complex Upper Half-Plane

Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 107,41 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

The authors consider the nonlinear equation $-\frac 1m=z+Sm$ with a parameter $z$ in the complex upper half plane $\mathbb H $, where $S$ is a positivity preserving symmetric linear operator acting on bounded functions. The solution with values in $ \mathbb H$ is unique and its $z$-dependence is conveniently described as the Stieltjes transforms of a family of measures $v$ on $\mathbb R$. In a previous paper the authors qualitatively identified the possible singular behaviors of $v$: under suitable conditions on $S$ we showed that in the density of $v$ only algebraic singularities of degree two or three may occur.

In this paper the authors give a comprehensive analysis of these singularities with uniform quantitative controls. They also find a universal shape describing the transition regime between the square root and cubic root singularities. Finally, motivated by random matrix applications in the authors' companion paper they present a complete stability analysis of the equation for any $z\in \mathbb H$, including the vicinity of the singularities.
Chapter 1 Introduction
1(4)
Chapter 2 Set-up and main results
5(16)
2.1 Generating density
7(6)
2.2 Stability
13(3)
2.3 Relationship between Theorem 2.6 and Theorem 2.6 of [ AEK16b]
16(1)
2.4 Outline of proofs
17(4)
Chapter 3 Local laws for large random matrices
21(6)
3.1 Proof of local law inside bulk of the spectrum
23(4)
Chapter 4 Existence, uniqueness and L2-bound
27(8)
4.1 Stieltjes transform representation
30(2)
4.2 Operator F and structural L2-bound
32(3)
Chapter 5 Properties of solution
35(12)
5.1 Relations between components of m and F
35(6)
5.2 Stability and operator B
41(6)
Chapter 6 Uniform bounds
47(8)
6.1 Uniform bounds from L2-estimates
49(2)
6.2 Uniform bound around z = 0 when a = 0
51(4)
Chapter 7 Regularity of solution
55(8)
Chapter 8 Perturbations when generating density is small
63(10)
8.1 Expansion of operator B
64(4)
8.2 Cubic equation
68(5)
Chapter 9 Behavior of generating density where it is small
73(28)
9.1 Expansion around non-zero minima of generating density
77(4)
9.2 Expansions around minima where generating density vanishes
81(15)
9.3 Proofs of Theorems 2.6 and 2.11
96(5)
Chapter 10 Stability around small minima of generating density
101(6)
Chapter 11 Examples
107(10)
11.1 The band operator, lack of self-averaging, and property A3
108(1)
11.2 Divergences in SB, outliers, and function T
108(4)
11.3 Blow-up at z = 0 when a = 0 and assumption B1
112(1)
11.4 Effects of non-constant function a
113(1)
11.5 Discretization and reduction of the QVE
113(2)
11.6 Simple example that exhibits all universal shapes
115(2)
Appendix A Appendix
117(14)
A.1 Proofs of auxiliary results in
Chapter 4
118(1)
A.2 Proofs of auxiliary results in
Chapter 5
119(1)
A.3 Scalability of matrices with non-negative entries
120(3)
A.4 Variational bounds when Re z = 0
123(3)
A.5 Holder continuity of Stieltjes transform
126(2)
A.6 Cubic roots and associated auxiliary functions
128(3)
Bibliography 131
Oskari Ajanki, Institute of Science and Technology, Klosterneuberg, Austria.

Laszlo Erdos, Institute of Science and Technology, Klosterneuberg, Austria.

Torben Kruger, Institute of Science and Technology, Klosterneuberg, Austria.