Muutke küpsiste eelistusi

E-raamat: Quality-aware Scheduling for Key-value Data Stores

  • Formaat: PDF+DRM
  • Sari: SpringerBriefs in Computer Science
  • Ilmumisaeg: 05-Jun-2015
  • Kirjastus: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • Keel: eng
  • ISBN-13: 9783662473061
  • Formaat - PDF+DRM
  • Hind: 55,56 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: PDF+DRM
  • Sari: SpringerBriefs in Computer Science
  • Ilmumisaeg: 05-Jun-2015
  • Kirjastus: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • Keel: eng
  • ISBN-13: 9783662473061

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book comprehensively illustrates quality-ware scheduling in key-value stores. In addition, it provides scheduling strategies and a prototype framework of quality-aware scheduler as well as a demonstration of online applications. The book offers a rich blend of theory and practice which is suitable for students, researchers and practitioners interested in distributed systems, NoSQL key-value stores and scheduling.
1 Introduction
1(10)
1.1 Application Scenarios
1(4)
1.2 The Research Significance and Challenges
5(2)
1.3 Implementation Framework
7(1)
1.4 Overview of the Book
8(3)
References
9(2)
2 Literature and Research Review
11(14)
2.1 Metrics for Quality-Aware Scheduling
11(4)
2.1.1 QoS Metrics
11(3)
2.1.2 QoD Metrics
14(1)
2.2 Quality-Aware Scheduling in Data Management System
15(5)
2.2.1 Quality-Aware Scheduling in RTDBMS
15(2)
2.2.2 Quality-Aware Scheduling in DSMS
17(1)
2.2.3 Quality-Aware Scheduling in RDBMS
17(2)
2.2.4 Quality-Aware Scheduling in Key-Value Stores
19(1)
2.3 Summary
20(5)
References
21(4)
3 Problem Overview
25(12)
3.1 Background Knowledge
25(5)
3.1.1 Data Organization
26(1)
3.1.2 Data Replication and Consistency
26(2)
3.1.3 User Queries
28(1)
3.1.4 System Updates: State-Transfer Versus Operation-Transfer
29(1)
3.2 Problem Statement
30(4)
3.2.1 QoS Penalty
31(1)
3.2.2 QoD Penalty
32(1)
3.2.3 Combined Penalty
33(1)
3.3 Summary
34(3)
References
34(3)
4 Scheduling for State-Transfer Updates
37(28)
4.1 On-Demand (OD) Mechanism
37(3)
4.1.1 WSJF-OD
39(1)
4.2 Hybrid On-Demand (HOD) Mechanism
40(1)
4.2.1 WSJF-HOD
41(1)
4.3 Freshness/Tardiness (FIT) Mechanism
41(4)
4.3.1 WSJF-FIT
44(1)
4.4 Adaptive Freshness/Tardiness (AFIT) Mechanism
45(7)
4.4.1 Query Routing
46(2)
4.4.2 Query Selection
48(3)
4.4.3 WSJF-AF1T
51(1)
4.5 Popularity-Aware Mechanism
52(3)
4.5.1 Populairty-Aware WSJF-OD
53(1)
4.5.2 Populairty-Aware WSJF-HOD
53(1)
4.5.3 Popularity-Aware WSJF-FIT
54(1)
4.5.4 Popularity-Aware WSJF-AFIT
54(1)
4.6 Experimental Study
55(7)
4.6.1 Baseline Policies
55(1)
4.6.2 Parameter Setting
56(2)
4.6.3 Impact of Query Arrival Rate
58(1)
4.6.4 Impact of Update Cost
59(1)
4.6.5 Impact of Different QoS and QoD Preferences
60(1)
4.6.6 Impact of Popularity
61(1)
4.7 Summary
62(3)
References
62(3)
5 Scheduling for Operation-Transfer Updates
65(18)
5.1 Hybrid On-Demand (HOD) Mechanism
65(2)
5.1.1 WSJF-HOD
66(1)
5.2 Freshness/Tardiness (FIT) Mechanism
67(6)
5.2.1 WSJF-FIT
72(1)
5.3 Popularity-Aware Mechanism
73(4)
5.3.1 Popularity-Aware WSJF-HOD
73(1)
5.3.2 Popularity-A ware WSJF-FIT
74(3)
5.4 Experimental Study
77(3)
5.4.1 Parameter Setting
77(1)
5.4.2 Impact of Update Arrival Rate
78(1)
5.4.3 Impact of Popularity and Approximation
79(1)
5.5 Summary
80(3)
References
81(2)
6 AQUAS: A Quality-Aware Scheduler
83(12)
6.1 System Overview
83(4)
6.1.1 System Goals
84(1)
6.1.2 System Design
85(2)
6.2 System Performance
87(4)
6.2.1 Benchmark
87(1)
6.2.2 Evaluation Result
88(3)
6.3 A Demonstration on MicroBlogging Application
91(3)
6.3.1 Timeline Queries in AQUAS
91(1)
6.3.2 A Case Study
91(3)
6.4 Summary
94(1)
References
94(1)
7 Conclusion and Future Work
95
7.1 Conclusion
95(2)
7.2 Future Work
97
References
97
Chen Xu received his PhD degree from East China Normal University (ECNU) in 2014 and Bachelor degree from Hefei University of Technology (HFUT) in 2009. In 2011, Chen studied as visiting student at The University of Queensland (UQ) supported by a research fellowship from UQ. He held the honors of outstanding graduates from ECNU and HFUT as well as Anhui provincial government of P.R. China. He was the winner of the National Scholarship from Ministry of Education of P.R. China in 2008. Chen has publications in academic journal such as Distributed and Parallel Databases (DAPD), and conferences including ICDE, DASFAA, etc. He is serving as a reviewer of Frontier of Computer Science (FCS). His research interest includes data management for data-intensive computing, large-scale data analysis, etc. Aoying Zhou is a professor on Computer Science at East China Normal University (ECNU), where he is heading the Institute for Data Science and Engineering. He got his master and bachelor degree in Computer Science from Sichuan University, in 1988 and 1985 respectively, and he won his Ph.D. degree from Fudan University in 1993. Before joining ECNU in 2008, Aoying worked for Fudan University at the Computer Science Department for 15 years. He is the winner of the National Science Fund for Distinguished Young Scholars supported by NSFC and the professorship appointment under Changjiang Scholars Program of Ministry of Education in China. He is now acting as a vice-director of ACM SIGMOD China and Database Technology Committee of China Computer Federation. He is serving as a member of the editorial boards VLDB Journal, WWW Journal, and etc. His research interests include Web data management, data management for data-intensive computing, memory cluster computing, benchmarking for big data and performance.