Muutke küpsiste eelistusi

E-raamat: Quality-Driven Query Answering for Integrated Information Systems

  • Formaat: PDF+DRM
  • Sari: Lecture Notes in Computer Science 2261
  • Ilmumisaeg: 31-Jul-2003
  • Kirjastus: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • Keel: eng
  • ISBN-13: 9783540459217
  • Formaat - PDF+DRM
  • Hind: 55,56 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: PDF+DRM
  • Sari: Lecture Notes in Computer Science 2261
  • Ilmumisaeg: 31-Jul-2003
  • Kirjastus: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • Keel: eng
  • ISBN-13: 9783540459217

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

The Internet and the World Wide Web (WWW) are becoming more and more important in our highly interconnected world as more and more data and information is made available for online access. Many individuals and governmental, commercial, cultural, and scientific organizations increasingly depend on information sources that can be accessed and queried over the Web. For example, accessing flight schedules or retrieving stock information has become common practice in todays world. When accessing this data, many people assume that the information accessed is accurate and that the data source can be accessed reliably. These two examples clearly demonstrate that not only the information content is important, the information about the quality of the data becomes an even more crucial and critical aspect for individuals and organizations when they make plans or take decisions based on the results of their queries. More precisely, having access to information of known quality becomes critical for the well-being and indeed for the functioning of modern industrialized societies. Surprisingly, despite the urgent need for clear concepts and techniques to judge and value quality and for technology to use such (meta) information, very few scientific results are known and available. Few approaches are known to use quality measures for accessing and querying information over the Web. Only a limited number of products on the IT market address this burning problem.

Muu info

Springer Book Archives
Part I. Querying the Web
Introduction
3(8)
Centralized Databases Vs. the World, Wide Web
4(1)
Information Quality on the Web
5(2)
Problem Definition
7(1)
Thesis Outlines
8(3)
Integrating Autonomous Information Sources
11(18)
The Mediator-Wrapper Architecture
12(1)
The Universal Relation
12(7)
Information Overlap
19(2)
Applications
21(2)
Related Work
23(2)
Summary
25(4)
Part II. Information Quality
Information Quality Criteria
29(22)
Information Quality Criteria for the Web
30(9)
Information Quality Assessment
39(11)
Summary
50(1)
Quality Ranking Methods
51(18)
Quality Model
51(1)
Scaling Methods
52(3)
User Weighting
55(1)
Ranking Methods
56(6)
Comparison and Evaluation
62(4)
Summary
66(3)
Part III. Quality-Driven Query Answering
Quality-Driven Query Planning
69(20)
Logical Query Planning
69(6)
Attaching Quality Reasoning to Query Planning
75(4)
Integrating Quality Reasoning and Query Planning
79(7)
Related Work
86(1)
Summary
87(2)
Query Planning Revisited
89(12)
Shortcomings of Conventional Query Planning
89(1)
Merge Operators
90(5)
Revised Logical Query Planning
95(4)
Related Work
99(1)
Summary
99(2)
Completeness of Data
101(22)
A Completeness Measure for Sources
102(4)
A Completeness Measure for Plans
106(8)
Properties of the Measures
114(4)
Other Overlap Situations
118(1)
Related Work
119(2)
Summary
121(2)
Completeness-Driven Query Optimization
123(30)
Completeness Maximization
124(2)
Maximizing Coverage
126(17)
Maximizing Completeness
143(4)
Algebraic Reordering
147(1)
Summary
148(5)
Part IV. Discussion
Conclusion
153(6)
Summary
153(2)
Further Applications for IQ-reasoning
155(2)
An Appeal
157(2)
References 159