Muutke küpsiste eelistusi

E-raamat: Quantitative Biosciences Companion in Python: Dynamics across Cells, Organisms, and Populations

  • Formaat: 272 pages
  • Ilmumisaeg: 09-Jan-2024
  • Kirjastus: Princeton University Press
  • Keel: eng
  • ISBN-13: 9780691259611
  • Formaat - PDF+DRM
  • Hind: 22,10 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: 272 pages
  • Ilmumisaeg: 09-Jan-2024
  • Kirjastus: Princeton University Press
  • Keel: eng
  • ISBN-13: 9780691259611

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

A hands-on lab guide in the Python programming language that enables students in the life sciences to reason quantitatively about living systems across scales

This lab guide accompanies the textbook Quantitative Biosciences, providing students with the skills they need to translate biological principles and mathematical concepts into computational models of living systems. This hands-on guide uses a case study approach organized around central questions in the life sciences, introducing landmark advances in the field while teaching students—whether from the life sciences, physics, computational sciences, engineering, or mathematics—how to reason quantitatively in the face of uncertainty.

  • Draws on real-world case studies in molecular and cellular biosciences, organismal behavior and physiology, and populations and ecological communities
  • Encourages good coding practices, clear and understandable modeling, and accessible presentation of results
  • Helps students to develop a diverse repertoire of simulation approaches, enabling them to model at the appropriate scale
  • Builds practical expertise in a range of methods, including sampling from probability distributions, stochastic branching processes, continuous time modeling, Markov chains, bifurcation analysis, partial differential equations, and agent-based simulations
  • Bridges the gap between the classroom and research discovery, helping students to think independently, troubleshoot and resolve problems, and embark on research of their own
  • Stand-alone computational lab guides for Quantitative Biosciences also available in R and MATLAB
Joshua S. Weitz is professor and the Clark Leadership Chair in Data Analytics in the Department of Biology at the University of Maryland. Previously, he held the Tom and Marie Patton Chair in Biological Sciences at the Georgia Institute of Technology, where he founded the Interdisciplinary Graduate Program in Quantitative Biosciences. He is the author of Quantitative Viral Ecology (Princeton). Nolan English is a postdoctoral researcher at Oak Ridge National Laboratory. Alexander B. Lee is a data scientist with expertise in developing biological models in Python and MATLAB. Ali Zamani is associate data developer at Priceline.