Contributors |
|
xxvii | |
Section Introduction |
|
xxxv | |
Quantitative MRI: Rationale and Challenges |
|
xxxvii | |
|
|
MRI Biomarkers |
|
liii | |
|
|
|
|
|
|
|
|
|
1 | (266) |
|
Chapter 1 Biophysical and Physiological Principles of T1 and T2 |
|
|
3 | (16) |
|
|
|
3 | (1) |
|
1.2 The biophysical basis of relaxation |
|
|
4 | (6) |
|
|
6 | (1) |
|
|
7 | (2) |
|
1.2.3 Mathematical formulation of relaxation |
|
|
9 | (1) |
|
1.3 Biophysical factors that influence relaxation |
|
|
10 | (5) |
|
1.3.1 Multicomponent relaxometry |
|
|
11 | (2) |
|
1.3.2 Microstructural orientation and magnetic susceptibility |
|
|
13 | (2) |
|
|
15 | (1) |
|
|
16 | (3) |
|
Chapter 2 Quantitative T1 and T1p Mapping |
|
|
19 | (28) |
|
|
|
|
|
19 | (1) |
|
|
20 | (5) |
|
|
20 | (1) |
|
|
21 | (2) |
|
2.2.3 Benefits and pitfalls |
|
|
23 | (2) |
|
2.2.4 Other saturation recovery T1 mapping techniques |
|
|
25 | (1) |
|
|
25 | (7) |
|
|
26 | (3) |
|
|
29 | (1) |
|
2.3.3 Benefits and pitfalls |
|
|
30 | (2) |
|
|
32 | (4) |
|
|
33 | (1) |
|
|
34 | (1) |
|
2.4.3 Benefits and pitfalls |
|
|
35 | (1) |
|
|
36 | (4) |
|
|
37 | (2) |
|
|
39 | (1) |
|
2.5.3 Benefits and pitfalls |
|
|
39 | (1) |
|
|
40 | (1) |
|
|
41 | (6) |
|
Chapter 3 Quantitative T2 and T2* Mapping |
|
|
47 | (18) |
|
|
|
47 | (1) |
|
3.2 Spin-spin relaxation (T2) measurement sequences |
|
|
48 | (8) |
|
3.2.1 Single spin echo sequences |
|
|
48 | (3) |
|
3.2.2 Multiecho spin echo sequences |
|
|
51 | (2) |
|
3.2.3 T2-prepared sequences |
|
|
53 | (1) |
|
3.2.4 Unspoiled gradient echo sequences |
|
|
54 | (1) |
|
3.2.5 Model-based reconstructions |
|
|
54 | (2) |
|
3.3 Effective spin-spin relaxation (T2*) measurement sequences |
|
|
56 | (2) |
|
3.3.1 Single and multiecho spoiled gradient echo sequences |
|
|
56 | (1) |
|
3.3.2 Prospective correction of susceptibility-induced field gradients |
|
|
56 | (1) |
|
3.3.3 Retrospective correction of susceptibility-induced field gradients |
|
|
57 | (1) |
|
3.3.4 Asymmetric spin echo sequences |
|
|
58 | (1) |
|
3.4 Simultaneous T2 and T2 measurement sequences |
|
|
58 | (2) |
|
3.5 Approaches for estimating T2 and T2* |
|
|
60 | (2) |
|
3.5.1 Single-exponential models |
|
|
60 | (1) |
|
3.5.2 Multiexponential models |
|
|
61 | (1) |
|
|
62 | (1) |
|
|
62 | (3) |
|
Chapter 4 Multiproperty Mapping Methods |
|
|
65 | (26) |
|
|
|
4.1 Simultaneous quantification of multiple relaxometry parameters |
|
|
65 | (1) |
|
4.2 Simultaneous quantification of T1, and T2 |
|
|
65 | (16) |
|
4.2.1 Inversion recovery-bSSFP (IR-bSSFP, IR TrueFISP) |
|
|
66 | (4) |
|
4.2.2 Magnetic resonance fingerprinting |
|
|
70 | (1) |
|
4.2.3 Magnetization-prepared dual echo steady-state |
|
|
70 | (2) |
|
4.2.4 Triple-echo steady-state |
|
|
72 | (4) |
|
|
76 | (5) |
|
4.3 Simultaneous quantification of T1, and T2* |
|
|
81 | (1) |
|
4.3.1 Absolute quantification |
|
|
81 | (1) |
|
4.3.2 Quantification relative to baseline |
|
|
81 | (1) |
|
4.4 Simultaneous quantification of T2 and T2 |
|
|
82 | (3) |
|
4.5 Common challenges in simultaneous relaxation time measurements |
|
|
85 | (1) |
|
|
85 | (2) |
|
|
87 | (4) |
|
Chapter 5 Specialized Mapping Methods in the Heart |
|
|
91 | (32) |
|
|
|
|
|
|
91 | (1) |
|
5.2 Cardiac T1, and extracellular volume mapping |
|
|
92 | (9) |
|
5.2.1 Inversion recovery-based T1 mapping |
|
|
92 | (3) |
|
5.2.2 Saturation recovery-based T1 mapping |
|
|
95 | (2) |
|
5.2.3 Combined inversion recovery and saturation recovery-based T1 mapping |
|
|
97 | (1) |
|
5.2.4 Cardiac extracellular volume mapping |
|
|
98 | (1) |
|
5.2.5 Novel developments in cardiac T1 mapping |
|
|
99 | (2) |
|
5.3 Cardiac T2 and T2 mapping |
|
|
101 | (8) |
|
5.3.1 T2 Vprepared T2 mapping |
|
|
102 | (1) |
|
5.3.2 Gradient and spin echo T2 mapping |
|
|
103 | (1) |
|
5.3.3 Comparison of T2 mapping techniques |
|
|
104 | (2) |
|
5.3.4 Cardiac T2* mapping |
|
|
106 | (2) |
|
5.3.5 Novel developments in cardiac T2 mapping |
|
|
108 | (1) |
|
5.4 Beyond single parameter mapping in the heart |
|
|
109 | (6) |
|
5.4.1 Joint T1-T2 mapping of the heart |
|
|
110 | (1) |
|
5.4.2 Cardiac magnetic resonance fingerprinting |
|
|
111 | (3) |
|
5.4.3 Cardiac Multitasking |
|
|
114 | (1) |
|
|
115 | (1) |
|
|
116 | (7) |
|
Chapter 6 Advances in Signal Processing for Relaxometry |
|
|
123 | (26) |
|
|
|
123 | (1) |
|
6.2 Advanced signal models |
|
|
124 | (7) |
|
6.2.1 T2 mapping using the slice-resolved Extended Phase Graph formalism |
|
|
124 | (2) |
|
6.2.2 Bloch equation simulation-based signal models |
|
|
126 | (1) |
|
6.2.3 Multi-GRE-based relaxation mapping |
|
|
127 | (1) |
|
6.2.4 Confounding factors |
|
|
128 | (3) |
|
6.3 Advanced reconstruction of undersampled datasets |
|
|
131 | (7) |
|
6.3.1 Non-Cartesian data sampling |
|
|
131 | (1) |
|
6.3.2 Model-based reconstruction of undersampled relaxation mapping |
|
|
132 | (1) |
|
6.3.3 Compressed sensing (CS) and sparsity-driven reconstruction |
|
|
133 | (5) |
|
6.4 Identification of new signal motifs |
|
|
138 | (5) |
|
6.4.1 Magnetic Resonance Fingerprinting |
|
|
139 | (2) |
|
6.4.2 Subvoxel multicompartment relaxometry |
|
|
141 | (2) |
|
|
143 | (1) |
|
|
144 | (5) |
|
Chapter 7 Relaxometry: Applications in the Brain |
|
|
149 | (36) |
|
|
|
|
149 | (1) |
|
7.2 Overview of the brain |
|
|
149 | (1) |
|
|
150 | (3) |
|
7.3.1 Measuring T1 in brain |
|
|
150 | (1) |
|
7.3.2 Physiological influences of T1 in brain |
|
|
150 | (2) |
|
7.3.3 Single or multiple T1, components? |
|
|
152 | (1) |
|
7.3.4 Interpreting T1 in the brain |
|
|
153 | (1) |
|
7.4 Clinical applications of T1 relaxation |
|
|
153 | (4) |
|
7.4.1 Development and aging |
|
|
153 | (2) |
|
|
155 | (1) |
|
7.4.3 Parkinson's disease |
|
|
156 | (1) |
|
7.4.4 Brain cancer and radiation |
|
|
156 | (1) |
|
|
157 | (1) |
|
|
157 | (3) |
|
7.5.1 Measuring multicomponent T2 in brain |
|
|
157 | (2) |
|
7.5.2 Physiological influences of T2 in brain |
|
|
159 | (1) |
|
7.5.3 Interpreting T2 in the brain |
|
|
160 | (1) |
|
7.6 Clinical applications of T2 relaxation |
|
|
160 | (7) |
|
7.6.1 Development and aging |
|
|
160 | (1) |
|
7.6.2 Developmental and genetic disorders |
|
|
161 | (2) |
|
|
163 | (2) |
|
7.6.4 Alzheimer's disease |
|
|
165 | (1) |
|
|
165 | (1) |
|
|
165 | (1) |
|
|
165 | (2) |
|
|
167 | (2) |
|
7.7.1 Measuring T1p, in brain |
|
|
167 | (2) |
|
7.7.2 Interpreting T1p in brain and clinical applications |
|
|
169 | (1) |
|
|
169 | (1) |
|
7.8.1 Measuring T2 in brain |
|
|
169 | (1) |
|
7.8.2 Interpreting T2 in brain and clinical applications |
|
|
169 | (1) |
|
7.9 Challenges with clinical application of relaxation |
|
|
170 | (1) |
|
|
171 | (1) |
|
|
171 | (1) |
|
|
171 | (14) |
|
Chapter 8 Relaxometry: Applications in Musculoskeletal Systems |
|
|
185 | (30) |
|
|
|
|
185 | (1) |
|
8.2 MRI relaxometry of cartilage |
|
|
185 | (9) |
|
8.2.1 Cartilage biochemistry and degeneration |
|
|
185 | (2) |
|
8.2.2 Post-contrast T1 relaxation time mapping with delayed gadolinium-enhanced MRI of cartilage |
|
|
187 | (2) |
|
8.2.3 T2 and T2* relaxation time mapping in cartilage |
|
|
189 | (2) |
|
8.2.4 T1p relaxation time mapping of cartilage |
|
|
191 | (3) |
|
8.3 MRI relaxometry to assess skeletal muscle |
|
|
194 | (3) |
|
8.4 MRI relaxometry of menisci, tendons, and ligaments |
|
|
197 | (2) |
|
8.5 MRI relaxometry of intervertebral discs |
|
|
199 | (3) |
|
8.6 Outlook and Conclusion |
|
|
202 | (1) |
|
|
203 | (1) |
|
|
203 | (12) |
|
Chapter 9 Relaxometry: Applications in the Body |
|
|
215 | (24) |
|
|
|
|
|
215 | (1) |
|
|
215 | (10) |
|
|
225 | (2) |
|
|
227 | (1) |
|
|
228 | (4) |
|
|
232 | (1) |
|
|
232 | (3) |
|
|
235 | (1) |
|
|
235 | (4) |
|
Chapter 10 Relaxometry: Applications in the Heart |
|
|
239 | (28) |
|
|
|
|
239 | (2) |
|
10.2 Acute chest pain syndromes |
|
|
241 | (3) |
|
|
241 | (2) |
|
|
243 | (1) |
|
10.2.3 Ischemic chest pain and nonobstructive coronary artery disease |
|
|
243 | (1) |
|
10.3 Acute myocardial infarction |
|
|
244 | (3) |
|
10.3.1 ST-elevation myocardial infarction |
|
|
244 | (2) |
|
10.3.2 Non-ST elevation myocardial infarction (NSTEMI) |
|
|
246 | (1) |
|
10.4 Chronic stable coronary artery disease |
|
|
247 | (1) |
|
|
248 | (2) |
|
10.5.1 Hypertrophic cardiomyopathy |
|
|
248 | (1) |
|
|
249 | (1) |
|
10.5.3 Anderson-Fabry disease |
|
|
249 | (1) |
|
10.5.4 Dilated cardiomyopathy |
|
|
250 | (1) |
|
10.5.5 Iron overload cardiomyopathy |
|
|
250 | (1) |
|
10.6 Systemic inflammatory diseases |
|
|
250 | (1) |
|
|
251 | (1) |
|
|
251 | (1) |
|
10.7.2 Mitral regurgitation |
|
|
251 | (1) |
|
10.8 Heart failure with preserved ejection fraction |
|
|
252 | (1) |
|
|
252 | (1) |
|
|
253 | (1) |
|
|
253 | (14) |
|
SECTION 2 Perfusion and Permeability |
|
|
267 | (188) |
|
Chapter 11 Physical and Physiological Principles of Perfusion and Permeability |
|
|
269 | (26) |
|
|
|
|
|
11.1 Introduction to perfusion and permeability |
|
|
269 | (1) |
|
11.2 Perfusion and vascular anatomy in different tissues and organs |
|
|
270 | (2) |
|
|
270 | (1) |
|
|
271 | (1) |
|
|
271 | (1) |
|
|
271 | (1) |
|
11.2.5 Perfusion and permeability in disease |
|
|
271 | (1) |
|
11.3 MRI signal and tracer agents |
|
|
272 | (3) |
|
11.3.1 Safety of MR contrast agents |
|
|
272 | (1) |
|
11.3.2 Relaxivity of contrast agents |
|
|
273 | (1) |
|
11.3.3 Measuring contrast agent concentration |
|
|
274 | (1) |
|
11.4 Basic tracer kinetics |
|
|
275 | (5) |
|
11.4.1 Linear and stationary tissues |
|
|
276 | (1) |
|
11.4.2 The transit time distribution |
|
|
277 | (3) |
|
11.4.3 The central volume theorem |
|
|
280 | (1) |
|
|
280 | (5) |
|
11.5.1 One-compartment model |
|
|
281 | (1) |
|
11.5.2 Two-compartment exchange model |
|
|
282 | (3) |
|
|
285 | (1) |
|
11.6 Model-free perfusion quantification |
|
|
285 | (7) |
|
|
292 | (1) |
|
|
292 | (3) |
|
Chapter 12 Arterial Spin Labeling MRI: Basic Physics, Pulse Sequences, and Modeling |
|
|
295 | (26) |
|
|
|
295 | (1) |
|
|
295 | (2) |
|
12.3 ASL labeling schemes |
|
|
297 | (5) |
|
|
297 | (2) |
|
|
299 | (1) |
|
12.3.3 Pseudo-continuous ASL |
|
|
299 | (2) |
|
12.3.4 Velocity selective ASL |
|
|
301 | (1) |
|
|
302 | (2) |
|
12.4.1 Single-TI and multi-TI sampling |
|
|
302 | (1) |
|
12.4.2 Multiphase or Look-Locker (LL) sampling strategy |
|
|
302 | (1) |
|
12.4.3 Time-encoded multi-PLD |
|
|
302 | (2) |
|
|
304 | (1) |
|
12.6 Improving the signal-to-noise ratio of ASL data |
|
|
304 | (4) |
|
12.6.1 Pre- and postsaturation schemes |
|
|
304 | (2) |
|
12.6.2 Background suppression |
|
|
306 | (1) |
|
|
306 | (2) |
|
12.7 Preprocessing ASL data |
|
|
308 | (1) |
|
12.7.1 Subtraction methods |
|
|
308 | (1) |
|
|
308 | (1) |
|
|
309 | (1) |
|
12.7.4 Partial volume effects |
|
|
309 | (1) |
|
12.8 Modeling the ASL signal |
|
|
309 | (4) |
|
12.8.1 Single compartment model using the modified Bloch equations |
|
|
309 | (1) |
|
12.8.2 General kinetic model |
|
|
310 | (3) |
|
12.9 Perfusion quantification |
|
|
313 | (3) |
|
12.9.1 Perfusion quantification using data collected at a single TI/PLD |
|
|
313 | (1) |
|
12.9.2 Perfusion quantification using multi-TI/PLD data |
|
|
313 | (1) |
|
12.9.3 Perfusion quantification using multiphase or Look-Locker sampling |
|
|
314 | (1) |
|
12.9.4 Comparison of methods of perfusion quantification |
|
|
315 | (1) |
|
12.10 Applications of ASL |
|
|
316 | (1) |
|
|
317 | (1) |
|
|
317 | (4) |
|
Chapter 13 Dynamic Contrast-Enhanced MRI: Basic Physics, Pulse Sequences, and Modeling |
|
|
321 | (24) |
|
|
|
|
321 | (1) |
|
13.2 Contrast agent mechanism |
|
|
321 | (4) |
|
13.3 Data acquisition in DCE-MRI |
|
|
325 | (5) |
|
13.3.1 Requirements of DCE-MRI data |
|
|
325 | (2) |
|
13.3.2 DCE-MRI pulse sequences |
|
|
327 | (2) |
|
13.3.3 Sampling trajectories |
|
|
329 | (1) |
|
13.3.4 Arterial input function |
|
|
330 | (1) |
|
13.4 Image reconstruction in DCE-MRI |
|
|
330 | (4) |
|
|
330 | (2) |
|
13.4.2 Constrained reconstruction |
|
|
332 | (2) |
|
13.5 Postprocessing for DCE-based perfusion mapping |
|
|
334 | (5) |
|
13.5.1 Motion compensation |
|
|
334 | (1) |
|
13.5.2 ROI-based and pixel-based methods |
|
|
335 | (3) |
|
|
338 | (1) |
|
|
339 | (1) |
|
|
340 | (5) |
|
Chapter 14 Dynamic Susceptibility Contrast MRI: Basic Physics, Pulse Sequences, and Modeling |
|
|
345 | (24) |
|
|
|
|
|
345 | (1) |
|
14.2 Biophysical foundations |
|
|
346 | (2) |
|
14.2.1 Dose-response in DSC-MRI |
|
|
346 | (1) |
|
14.2.2 Transverse relaxivity of contrast agents in vivo |
|
|
347 | (1) |
|
14.3 DSC-MRI data acquisition |
|
|
348 | (5) |
|
14.3.1 Current recommendations |
|
|
348 | (2) |
|
14.3.2 Susceptibility artifacts |
|
|
350 | (2) |
|
|
352 | (1) |
|
14.4 DSC-MRI data analysis for perfusion mapping |
|
|
353 | (7) |
|
|
353 | (2) |
|
|
355 | (1) |
|
|
356 | (1) |
|
14.4.4 Contrast agent extravasation considerations |
|
|
357 | (1) |
|
14.4.5 Arterial input function determination |
|
|
358 | (2) |
|
14.5 Advanced DSC-MRI methods |
|
|
360 | (1) |
|
14.6 DSC-MRI beyond the brain |
|
|
361 | (1) |
|
|
361 | (1) |
|
|
362 | (1) |
|
|
362 | (7) |
|
Chapter 15 Applications of Quantitative Perfusion and Permeability in the Brain |
|
|
369 | (36) |
|
|
|
|
|
369 | (1) |
|
15.2 Applications of perfusion MRI in ischemic cerebrovascular disease |
|
|
370 | (9) |
|
15.2.1 Acute ischemic stroke |
|
|
370 | (6) |
|
15.2.2 Chronic steno-occlusive disease |
|
|
376 | (3) |
|
15.3 Applications of perfusion MRI in brain cancer |
|
|
379 | (9) |
|
|
379 | (3) |
|
15.3.2 Diagnosis and neurosurgery |
|
|
382 | (4) |
|
15.3.3 Evaluation of tumor progression and treatment response |
|
|
386 | (2) |
|
15.4 Applications of perfusion MRI in dementia |
|
|
388 | (7) |
|
|
388 | (3) |
|
|
391 | (1) |
|
15.4.3 Longitudinal monitoring of disease progression |
|
|
391 | (1) |
|
15.4.4 Limitations of ASL in neurodegenerative disease |
|
|
391 | (4) |
|
|
395 | (1) |
|
|
396 | (9) |
|
Chapter 16 Applications of Quantitative Perfusion and Permeability in the Liver |
|
|
405 | (22) |
|
|
|
|
|
405 | (1) |
|
16.2 The technical challenges of liver perfusion analysis |
|
|
406 | (4) |
|
|
406 | (1) |
|
16.2.2 Liver perfusion modeling |
|
|
406 | (3) |
|
16.2.3 Correcting for liver movement |
|
|
409 | (1) |
|
16.2.4 Reproducibility of liver perfusion measurements |
|
|
409 | (1) |
|
16.3 Clinical applications |
|
|
410 | (5) |
|
|
410 | (3) |
|
16.3.2 Chronic liver disease |
|
|
413 | (2) |
|
16.4 Perfusion mapping with hepatobiliary contrast agents |
|
|
415 | (3) |
|
16.5 Alternative methods to assess liver perfusion |
|
|
418 | (1) |
|
|
419 | (1) |
|
|
420 | (1) |
|
|
420 | (7) |
|
Chapter 17 Applications of Quantitative Perfusion and Permeability in the Body |
|
|
427 | (28) |
|
|
|
|
|
|
|
427 | (1) |
|
|
428 | (5) |
|
|
428 | (1) |
|
17.2.2 Technical developments |
|
|
428 | (4) |
|
17.2.3 Clinical applications |
|
|
432 | (1) |
|
17.3 Pancreatic perfusion |
|
|
433 | (3) |
|
|
433 | (1) |
|
17.3.2 Technical developments |
|
|
433 | (2) |
|
17.3.3 Clinical applications |
|
|
435 | (1) |
|
|
436 | (2) |
|
|
436 | (1) |
|
17.4.2 Technical developments |
|
|
437 | (1) |
|
17.4.3 Clinical applications |
|
|
438 | (1) |
|
|
438 | (3) |
|
|
438 | (1) |
|
17.5.2 Technical developments |
|
|
439 | (1) |
|
17.5.3 Clinical applications |
|
|
439 | (2) |
|
|
441 | (5) |
|
|
441 | (1) |
|
17.6.2 Technical developments |
|
|
442 | (2) |
|
17.6.3 Clinical applications |
|
|
444 | (2) |
|
|
446 | (1) |
|
|
446 | (9) |
|
|
455 | (210) |
|
Chapter 18 Physical and Physiological Principles of Diffusion |
|
|
457 | (20) |
|
|
|
457 | (1) |
|
|
458 | (3) |
|
18.3 The Stejskal-Tanner pulse sequence: A magnetic resonance method for measuring diffusion |
|
|
461 | (3) |
|
18.4 Diffusion in biological tissue |
|
|
464 | (1) |
|
18.5 Intravoxel incoherent motion |
|
|
465 | (1) |
|
18.6 Using anisotropy in water diffusion to characterize cellular anatomy |
|
|
466 | (3) |
|
|
469 | (1) |
|
18.8 Sensitivity of diffusion to cellular physiology and metabolism |
|
|
470 | (3) |
|
|
473 | (1) |
|
|
474 | (3) |
|
Chapter 19 Acquisition of Diffusion MRI Data |
|
|
477 | (32) |
|
|
|
|
477 | (1) |
|
19.2 Diffusion encoding strategies |
|
|
477 | (7) |
|
19.2.1 Single-pulsed gradients |
|
|
478 | (1) |
|
19.2.2 The diffusion propagator |
|
|
479 | (1) |
|
19.2.3 Oscillating gradients and time-dependent diffusion |
|
|
480 | (1) |
|
19.2.4 Multiple-pulsed gradients |
|
|
481 | (1) |
|
19.2.5 Generalized diffusion waveforms |
|
|
482 | (2) |
|
19.3 Refocusing mechanisms |
|
|
484 | (3) |
|
|
487 | (6) |
|
19.4.1 Single-shot 2D echo-planar imaging |
|
|
488 | (2) |
|
|
490 | (1) |
|
19.4.3 Alternatives to EPI |
|
|
491 | (1) |
|
19.4.4 Acceleration methods |
|
|
492 | (1) |
|
19.5 Hardware considerations and system limitations |
|
|
493 | (2) |
|
19.6 Diffusion mapping outside the brain |
|
|
495 | (2) |
|
|
495 | (1) |
|
|
496 | (1) |
|
19.6.3 Peripheral nervous system |
|
|
496 | (1) |
|
|
496 | (1) |
|
|
497 | (1) |
|
|
497 | (1) |
|
|
497 | (1) |
|
|
497 | (12) |
|
Chapter 20 Modeling Fiber Orientations Using Diffusion MRI |
|
|
509 | (24) |
|
|
|
|
509 | (2) |
|
|
511 | (1) |
|
20.3 Diffusion tensor imaging |
|
|
511 | (3) |
|
20.3.1 Geometric interpretation |
|
|
512 | (1) |
|
20.3.2 DTI metrics and DEC-FA |
|
|
513 | (1) |
|
20.4 Toward modeling crossing fibers: Higher-order signal representations |
|
|
514 | (1) |
|
20.4.1 Diffusion kurtosis imaging |
|
|
514 | (1) |
|
20.4.2 Multi-tensor models |
|
|
515 | (1) |
|
20.5 High-angular resolution diffusion imaging |
|
|
515 | (4) |
|
20.5.1 Spherical Harmonic decomposition |
|
|
516 | (1) |
|
|
517 | (2) |
|
20.6 Multifascicle compartment models |
|
|
519 | (1) |
|
20.7 Spherical deconvolution |
|
|
519 | (5) |
|
20.7.1 The spherical convolution model |
|
|
520 | (1) |
|
20.7.2 Deconvolution and constraints |
|
|
521 | (1) |
|
20.7.3 Response function estimation |
|
|
522 | (1) |
|
20.7.4 Multi-tissue spherical deconvolution |
|
|
523 | (1) |
|
20.8 Validation of fiber orientation estimation |
|
|
524 | (1) |
|
|
525 | (1) |
|
|
526 | (7) |
|
Chapter 21 Diffusion MRI Fiber Tractography |
|
|
533 | (38) |
|
|
|
|
|
533 | (1) |
|
21.2 Streamline tractography |
|
|
533 | (15) |
|
|
533 | (10) |
|
21.2.2 Deterministic vs probabilistic algorithms |
|
|
543 | (3) |
|
21.2.3 Targeted tracking/virtual dissection vs whole-brain fiber tracking |
|
|
546 | (2) |
|
21.3 Nonstreamline tractography |
|
|
548 | (3) |
|
21.3.1 Front evolution tractography |
|
|
548 | (1) |
|
21.3.2 Geodesic tractography |
|
|
548 | (1) |
|
21.3.3 Global tractography |
|
|
548 | (2) |
|
21.3.4 Voxel-constrained tractography algorithms |
|
|
550 | (1) |
|
|
551 | (8) |
|
21.4.1 Streamline-based connection densities |
|
|
552 | (4) |
|
21.4.2 Other quantitative methods involving tractography |
|
|
556 | (3) |
|
|
559 | (1) |
|
|
559 | (12) |
|
Chapter 22 Measuring Microstructural Features Using Diffusion MRI |
|
|
571 | (34) |
|
|
|
571 | (2) |
|
22.1.1 What is the motivation for measuring microstructure using diffusion MRI? |
|
|
571 | (1) |
|
22.1.2 What is "microstructure"? |
|
|
572 | (1) |
|
22.2 Directly imaging intrinsic microstructural features |
|
|
573 | (6) |
|
22.2.1 The pore density function |
|
|
573 | (4) |
|
22.2.2 The averaged propagator |
|
|
577 | (1) |
|
22.2.3 The diffusion spectrum |
|
|
577 | (2) |
|
22.3 Strategies for indirect quantification of microstructure |
|
|
579 | (15) |
|
22.3.1 Single diffusion encoding signal representations |
|
|
581 | (10) |
|
|
591 | (1) |
|
22.3.3 Biophysical models |
|
|
592 | (2) |
|
22.4 Frontiers of microstructural MRI |
|
|
594 | (1) |
|
|
595 | (1) |
|
|
596 | (1) |
|
|
596 | (9) |
|
Chapter 23 Diffusion MRI: Applications in the Brain |
|
|
605 | (32) |
|
|
|
|
|
605 | (1) |
|
23.2 Clinical applications of quantitative diffusion mapping |
|
|
605 | (9) |
|
23.3 Research applications of diffusion imaging |
|
|
614 | (14) |
|
23.3.1 Multiple sclerosis (MS) |
|
|
614 | (3) |
|
23.3.2 Amyotrophic lateral sclerosis (ALS) |
|
|
617 | (3) |
|
|
620 | (5) |
|
23.3.4 Psychiatric disorders |
|
|
625 | (3) |
|
|
628 | (1) |
|
|
628 | (1) |
|
|
628 | (1) |
|
|
628 | (9) |
|
Chapter 24 Diffusion MRI: Applications Outside the Brain |
|
|
637 | (28) |
|
|
|
|
|
|
|
|
|
637 | (1) |
|
24.2 Principles of diffusion imaging as applied in the body |
|
|
637 | (5) |
|
24.2.1 General considerations |
|
|
637 | (1) |
|
24.2.2 Technical considerations |
|
|
638 | (4) |
|
24.3 Quantitative diffusion mapping |
|
|
642 | (4) |
|
24.3.1 Quantitative measurements using the monoexponential model |
|
|
642 | (2) |
|
24.3.2 Nonmonoexponential quantitative measurements |
|
|
644 | (2) |
|
24.3.3 Whole-body quantitative diffusion measurements: Diffusion volume, global ADC |
|
|
646 | (1) |
|
24.4 Clinical applications |
|
|
646 | (8) |
|
|
646 | (3) |
|
24.4.2 Head and neck cancers |
|
|
649 | (1) |
|
24.4.3 Focal liver lesions |
|
|
649 | (1) |
|
24.4.4 Focal pancreatic lesions |
|
|
650 | (1) |
|
24.4.5 Renal masses and renal function |
|
|
651 | (1) |
|
24.4.6 Gynecological tumors |
|
|
652 | (1) |
|
|
653 | (1) |
|
24.4.8 Bone marrow disease: Myeloma, bone metastases |
|
|
653 | (1) |
|
|
654 | (1) |
|
|
655 | (10) |
|
SECTION 4 Fat and Iron Quantification |
|
|
665 | (140) |
|
Chapter 25 Physical and Physiological Properties of Fat |
|
|
667 | (14) |
|
|
|
|
667 | (1) |
|
25.2 Molecular and cellular characteristics of adipose tissue |
|
|
667 | (2) |
|
|
669 | (2) |
|
25.4 Fat distribution in humans |
|
|
671 | (2) |
|
25.5 Pathophysiological association |
|
|
673 | (1) |
|
25.6 Magnetic resonance of adipose tissues |
|
|
674 | (1) |
|
|
675 | (1) |
|
|
676 | (5) |
|
Chapter 26 Physical and Physiological Properties of Iron |
|
|
681 | (14) |
|
|
|
|
|
681 | (1) |
|
26.2 The form and function of iron in the body |
|
|
681 | (1) |
|
|
682 | (3) |
|
|
684 | (1) |
|
|
685 | (1) |
|
|
685 | (1) |
|
|
685 | (1) |
|
|
686 | (1) |
|
|
686 | (1) |
|
|
686 | (1) |
|
26.6 Iron accumulation in the liver |
|
|
687 | (1) |
|
26.7 Iron accumulation in the heart |
|
|
688 | (1) |
|
26.8 Iron accumulation in other organs |
|
|
689 | (1) |
|
26.8.1 Effect of iron overload in hormone-producing endocrine glands |
|
|
689 | (1) |
|
26.8.2 Effect of iron overload in the brain |
|
|
689 | (1) |
|
26.9 Management of patients with iron overload |
|
|
690 | (1) |
|
|
691 | (1) |
|
|
691 | (4) |
|
Chapter 27 Fat Quantification Techniques |
|
|
695 | (40) |
|
|
|
27.1 MR properties of fat |
|
|
695 | (4) |
|
|
695 | (1) |
|
27.1.2 Chemical shift of fat |
|
|
696 | (2) |
|
|
698 | (1) |
|
27.2 Quantifying fat using MR spectroscopy |
|
|
699 | (4) |
|
|
699 | (1) |
|
27.2.2 MRS pulse sequences |
|
|
700 | (2) |
|
|
702 | (1) |
|
27.2.4 Quantitative measurements |
|
|
703 | (1) |
|
27.3 Quantifying fat using chemical-shift-encoded MRI |
|
|
703 | (14) |
|
27.3.1 Fat-water separation using CSE-MRI |
|
|
704 | (7) |
|
27.3.2 CSE-MRI pulse sequences |
|
|
711 | (1) |
|
27.3.3 Fat quantification using CSE-MRI |
|
|
711 | (6) |
|
27.3.4 Standardized phantoms |
|
|
717 | (1) |
|
27.4 Emerging CSE-MRI techniques for fat quantification |
|
|
717 | (9) |
|
27.4.1 Free-breathing Cartesian CSE-MRI fat quantification techniques |
|
|
717 | (4) |
|
27.4.2 Free-breathing non-Cartesian CSE-MRI fat quantification techniques |
|
|
721 | (3) |
|
27.4.3 Advanced CSE-MRI reconstruction and signal modeling |
|
|
724 | (2) |
|
|
726 | (1) |
|
|
726 | (9) |
|
Chapter 28 Applications of Fat Mapping |
|
|
735 | (44) |
|
|
|
|
|
735 | (2) |
|
28.2 Quantification of abdominal adipose tissue |
|
|
737 | (10) |
|
28.2.1 Subcutaneous and visceral adipose tissue |
|
|
737 | (5) |
|
28.2.2 Applications and trends |
|
|
742 | (5) |
|
28.3 Current applications of fat quantification in organs |
|
|
747 | (9) |
|
|
747 | (4) |
|
28.3.2 Heart, pancreas, kidneys, and brown adipose tissue |
|
|
751 | (5) |
|
28.4 Current applications of fat quantification in skeletal muscle and bone marrow |
|
|
756 | (7) |
|
28.4.1 IMCL and EMCL in skeletal muscle |
|
|
756 | (3) |
|
28.4.2 Fat infiltration in skeletal muscle |
|
|
759 | (3) |
|
28.4.3 Bone marrow adipose tissue |
|
|
762 | (1) |
|
28.5 Future directions and unmet needs |
|
|
763 | (1) |
|
|
764 | (15) |
|
Chapter 29 Iron Mapping Techniques and Applications |
|
|
779 | (26) |
|
|
|
|
|
779 | (1) |
|
|
779 | (1) |
|
|
780 | (1) |
|
29.2 R2*-based iron quantification |
|
|
780 | (8) |
|
|
780 | (7) |
|
|
787 | (1) |
|
29.3 R2-based iron quantification |
|
|
788 | (1) |
|
29.4 Quantitative susceptibility mapping |
|
|
788 | (6) |
|
|
788 | (2) |
|
|
790 | (1) |
|
29.4.3 Magnetic susceptibility reconstruction |
|
|
790 | (3) |
|
|
793 | (1) |
|
29.4.5 Applications of QSM for iron mapping |
|
|
793 | (1) |
|
|
794 | (2) |
|
|
796 | (1) |
|
|
796 | (9) |
|
SECTION 5 Quantification of Other MRI-Accessible Tissue Properties |
|
|
805 | (174) |
|
Chapter 30 Electrical Properties Mapping |
|
|
807 | (12) |
|
|
30.1 Electrical properties: Physical and physiological background |
|
|
807 | (1) |
|
|
808 | (1) |
|
30.3 Physical/mathematical background of EPT |
|
|
809 | (1) |
|
30.4 EPT measurement methods |
|
|
810 | (1) |
|
30.5 Reconstruction algorithms |
|
|
811 | (3) |
|
30.6 Limitations and challenges of EPT |
|
|
814 | (1) |
|
30.7 Clinical applications |
|
|
814 | (1) |
|
|
815 | (1) |
|
|
815 | (1) |
|
|
815 | (4) |
|
Chapter 31 Quantitative Susceptibility Mapping |
|
|
819 | (20) |
|
|
31.1 Physical principles of susceptibility and MRI phase |
|
|
819 | (2) |
|
31.1.1 Susceptibility: What and why? |
|
|
819 | (1) |
|
31.1.2 The relationship between magnetic susceptibility and MRI phase |
|
|
819 | (2) |
|
31.2 Imaging methodology and image processing pipeline |
|
|
821 | (4) |
|
31.3 Practical considerations and limitations of QSM techniques |
|
|
825 | (1) |
|
31.4 Sources of susceptibility contrast and clinical applications of QSM |
|
|
826 | (3) |
|
31.4.1 Tissue iron--Deep-brain structures and dementia |
|
|
827 | (1) |
|
31.4.2 Deoxyhemoglobin and blood iron--Brain oxygenation and microvascular disease |
|
|
828 | (1) |
|
31.4.3 Myelin--Demyelination and microstructure |
|
|
828 | (1) |
|
31.4.4 Other applications |
|
|
828 | (1) |
|
|
829 | (1) |
|
|
829 | (10) |
|
Chapter 32 Magnetization Transfer |
|
|
839 | (18) |
|
|
|
|
839 | (1) |
|
|
840 | (3) |
|
32.3 Effects of MT on relaxometry |
|
|
843 | (5) |
|
32.3.1 Inversion recovery measurement of Rt |
|
|
844 | (1) |
|
32.3.2 Spin echo measurement of R2 |
|
|
845 | (1) |
|
32.3.3 Steady-state measurements of R1 and R2 |
|
|
845 | (3) |
|
32.3.4 Outlook: Relaxometry in the presence of MT effects |
|
|
848 | (1) |
|
32.4 Quantitative MT approaches |
|
|
848 | (3) |
|
32.4.1 Continuous wave Z-spectrum measurements |
|
|
849 | (1) |
|
32.4.2 Pulsed measurements |
|
|
849 | (2) |
|
32.4.3 Inversion or saturation recovery methods |
|
|
851 | (1) |
|
|
851 | (1) |
|
|
852 | (1) |
|
|
852 | (5) |
|
Chapter 33 Chemical Exchange Mapping |
|
|
857 | (28) |
|
|
|
|
33.1 Principles of chemical exchange saturation transfer |
|
|
857 | (3) |
|
33.1.1 Bloch-McConnell equations |
|
|
858 | (1) |
|
|
859 | (1) |
|
33.1.3 Exchange metrics and parameters |
|
|
859 | (1) |
|
33.2 CEST MRI pulse sequences and data collection |
|
|
860 | (1) |
|
33.2.1 Basic CEST MRI sequence design |
|
|
860 | (1) |
|
33.2.2 Collection of CEST MRI data |
|
|
861 | (1) |
|
|
861 | (5) |
|
33.3.1 MTR asymmetry analysis |
|
|
861 | (3) |
|
33.3.2 Lorentzian fitting |
|
|
864 | (1) |
|
33.3.3 R1w.-scaled inverse analysis |
|
|
865 | (1) |
|
33.4 Exchange rate mapping |
|
|
866 | (3) |
|
33.4.1 qCEST with saturation time and power dependency |
|
|
866 | (1) |
|
33.4.2 Omega plot and generalized omega plot analysis |
|
|
867 | (1) |
|
33.4.3 Ratiometric analysis |
|
|
868 | (1) |
|
33.5 CEST contrast agents |
|
|
869 | (3) |
|
33.5.1 Diamagnetic CEST agents |
|
|
870 | (1) |
|
|
871 | (1) |
|
|
872 | (3) |
|
33.6.1 pH-sensitive APT imaging of acute stroke |
|
|
872 | (3) |
|
33.6.2 CEST imaging of tumor |
|
|
875 | (1) |
|
33.7 Practical limitations |
|
|
875 | (2) |
|
|
876 | (1) |
|
33.7.2 Field inhomogeneity correction |
|
|
876 | (1) |
|
33.7.3 The specificity of CEST measurement |
|
|
877 | (1) |
|
|
877 | (1) |
|
|
877 | (8) |
|
Chapter 34 MR Thermometry |
|
|
885 | (22) |
|
|
|
885 | (1) |
|
34.2 MR thermometry: Theory |
|
|
885 | (1) |
|
34.3 Proton resonance frequency (PRF) thermometry |
|
|
886 | (1) |
|
34.4 Anatomy of traditional PRF thermometry pulse sequences |
|
|
887 | (5) |
|
34.5 Improving upon the traditional design |
|
|
892 | (4) |
|
34.6 TNR-optimum combination of multiple signals |
|
|
896 | (1) |
|
34.7 Dealing with motion and other confounders |
|
|
897 | (1) |
|
34.8 Limits of PRF thermometry |
|
|
898 | (1) |
|
34.9 Applications and future directions |
|
|
899 | (2) |
|
|
901 | (1) |
|
|
901 | (1) |
|
|
901 | (6) |
|
Chapter 35 Motion Encoded MRI and Elastography |
|
|
907 | (24) |
|
|
|
35.1 O Motion! Where art thou? |
|
|
907 | (1) |
|
|
907 | (5) |
|
35.2.1 Phase-contrast MRI |
|
|
907 | (1) |
|
35.2.2 Spatial modulation of magnetization |
|
|
908 | (1) |
|
35.2.3 Displacement encoding with stimulated echoes |
|
|
909 | (1) |
|
|
910 | (2) |
|
|
912 | (1) |
|
35.3 Magnetic Resonance Elastography |
|
|
912 | (13) |
|
35.3.1 MRE Step 1: introduce shear vibrations into the tissue of interest |
|
|
914 | (1) |
|
35.3.2 MRE Step 2: imaging of shear wave propagation |
|
|
915 | (1) |
|
35.3.3 MRE Step 3: Quantification of mechanical parameters |
|
|
916 | (2) |
|
35.3.4 Applications of MR elastography |
|
|
918 | (7) |
|
|
925 | (1) |
|
|
925 | (6) |
|
Chapter 36 Flow Quantification with MRI |
|
|
931 | (22) |
|
|
|
|
931 | (1) |
|
36.2 Principles of flow encoding |
|
|
931 | (6) |
|
36.2.1 One-directional flow encoding |
|
|
931 | (3) |
|
36.2.2 Two-directional & three-directional flow encoding |
|
|
934 | (2) |
|
|
936 | (1) |
|
36.3 Phase contrast methodology |
|
|
937 | (10) |
|
|
937 | (3) |
|
36.3.2 Reconstruction & visualization |
|
|
940 | (2) |
|
36.3.3 Hemodynamic analysis |
|
|
942 | (2) |
|
36.3.4 Confounding factors and artifacts |
|
|
944 | (3) |
|
|
947 | (1) |
|
|
947 | (1) |
|
|
948 | (1) |
|
|
948 | (1) |
|
|
948 | (1) |
|
|
948 | (5) |
|
Chapter 37 Hyperpolarized Magnetic Resonance Spectroscopy and Imaging |
|
|
953 | (26) |
|
|
|
953 | (1) |
|
37.2 Principles of hyperpolarization--Basic concepts and sensitivity |
|
|
954 | (3) |
|
37.3 Hyperpolarization technologies |
|
|
957 | (2) |
|
37.4 System set-up for hyperpolarized 13C |
|
|
959 | (1) |
|
37.5 Imaging hyperpolarized substrates |
|
|
960 | (5) |
|
37.6 Quantifying temporal kinetics |
|
|
965 | (3) |
|
37.7 Conservation of mass |
|
|
968 | (1) |
|
37.8 Applications of hyperpolarized l3C MRI |
|
|
968 | (3) |
|
37.9 Application of hyperpolarized gases |
|
|
971 | (1) |
|
|
971 | (1) |
|
|
971 | (1) |
|
|
972 | (7) |
Index |
|
979 | |