Muutke küpsiste eelistusi

E-raamat: Quantum Calculus: New Concepts, Impulsive Ivps And Bvps, Inequalities

(King Abdulaziz Univ, Saudi Arabia), (Univ Of Ioannina, Greece), (King Mongkut's Univ Of Technology North Bangkok, Thailand)
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 35,10 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

The main objective of this book is to extend the scope of the q-calculus based on the definition of q-derivative [ Jackson (1910)] to make it applicable to dense domains. As a matter of fact, Jackson's definition of q-derivative fails to work for impulse points while this situation does not arise for impulsive equations on q-time scales as the domains consist of isolated points covering the case of consecutive points. In precise terms, we study quantum calculus on finite intervals.In the first part, we discuss the concepts of qk-derivative and qk-integral, and establish their basic properties. As applications, we study initial and boundary value problems of impulsive qk-difference equations and inclusions equipped with different kinds of boundary conditions. We also transform some classical integral inequalities and develop some new integral inequalities for convex functions in the context of qk-calculus. In the second part, we develop fractional quantum calculus in relation to a new qk-shifting operator and establish some existence and qk uniqueness results for initial and boundary value problems of impulsive fractional qk-difference equations.
Preface v
1 Preliminaries
1(4)
1.1 Definitions and results from multivalued analysis
1(1)
1.2 Fixed point theorems
2(3)
2 Quantum Calculus on Finite Intervals
5(12)
2.1 Introduction
5(1)
2.2 Preliminaries
5(2)
2.3 Quantum Calculus on finite intervals
7(8)
2.4 Notes and remarks
15(2)
3 Initial Value Problems for Impulsive qk-Difference Equations and Inclusions
17(28)
3.1 Introduction
17(1)
3.2 Impulsive qk-difference equations
17(16)
3.2.1 First-order impulsive qk-difference equations
17(3)
3.2.2 Second-order impulsive qk-difference equations
20(13)
3.3 Impulsive qk-difference inclusions
33(10)
3.3.1 First-order impulsive qk-difference inclusions
33(4)
3.3.2 Second-order impulsive qk-difference inclusions
37(6)
3.4 Notes and remarks
43(2)
4 Boundary Value Problems for First-Order Impulsive qk-Integro-difference Equations and Inclusions
45(38)
4.1 Introduction
45(1)
4.2 Impulsive functional qk-integro-difference equations
45(13)
4.3 Impulsive qk-integral boundary value problems
58(6)
4.4 Positive extremal solutions for nonlinear impulsive qk-difference equations
64(6)
4.5 Impulsive anti-periodic boundary value problems for nonlinear qk-difference equations
70(4)
4.6 Impulsive functional qk-integro-difference inclusions
74(7)
4.7 Notes and remarks
81(2)
5 Impulsive qk-Difference Equations with Different Kinds of Boundary Conditions
83(50)
5.1 Introduction
83(1)
5.2 Nonlocal three-point boundary value problems for impulsive qk-difference equations
83(10)
5.3 Second-order impulsive qk-difference equations with separated boundary conditions
93(9)
5.4 Anti-periodic boundary value problems of nonlinear second-order impulsive qk-difference equations
102(7)
5.5 Second-order impulsive qk-difference equations and integral boundary conditions
109(12)
5.6 Nonlinear second-order impulsive qk-difference equations with average valued conditions
121(10)
5.7 Notes and remarks
131(2)
6 Nonlinear Second-Order Impulsive qk-Difference Langevin Equation with Boundary Conditions
133(16)
6.1 Introduction
133(1)
6.2 An auxiliary lemma
134(3)
6.3 Main results
137(11)
6.4 Notes
148(1)
7 Quantum Integral Inequalities on Finite Intervals
149(20)
7.1 Introduction
149(1)
7.2 Quantum integral inequalities on finite intervals
150(9)
7.3 Quantum integral inequalities for convex functions
159(8)
7.4 Notes and remarks
167(2)
8 Impulsive Quantum Difference Systems with Boundary Conditions
169(16)
8.1 Introduction
169(1)
8.2 An auxiliary lemma
169(3)
8.3 Main results
172(11)
8.4 Notes and remarks
183(2)
9 New Concepts of Fractional Quantum Calculus and Applications to Impulsive Fractional qk-Difference Equations
185(22)
9.1 Introduction
185(1)
9.2 Preliminaries
185(2)
9.3 New concepts of fractional quantum calculus
187(8)
9.4 Impulsive fractional qk-difference equations
195(10)
9.4.1 Impulsive fractional qk-difference equation of order 0 > α ≥ 1
195(5)
9.4.2 Impulsive fractional qk-difference equation of order 1> α ≥ 2
200(5)
9.5 Notes and remarks
205(2)
10 Integral Inequalities via Fractional Quantum Calculus
207(10)
10.1 Introduction
207(1)
10.2 Main results
207(9)
10.3 Notes and remarks
216(1)
11 Nonlocal Boundary Value Problems for Impulsive Fractional qk-Difference Equations
217(14)
11.1 Introduction
217(1)
11.2 Some useful lemmas
217(5)
11.3 Main results
222(8)
11.4 Notes and remarks
230(1)
12 Existence Results for Impulsive Fractional qk-Difference Equations with Anti-periodic Boundary Conditions
231(12)
12.1 Introduction
231(1)
12.2 Auxiliary lemma
231(3)
12.3 Main results
234(8)
12.4 Notes and remarks
242(1)
13 Impulsive Fractional qk-Integro-difference Equations with Boundary Conditions
243(18)
13.1 Introduction
243(1)
13.2 Auxiliary results
243(4)
13.3 Main results
247(13)
13.4 Notes and remarks
260(1)
14 Impulsive Hybrid Fractional Quantum Difference Equations
261(8)
14.1 Introduction
261(1)
14.2 An auxiliary lemma
261(2)
14.3 Main result
263(5)
14.4 Notes and remarks
268(1)
Bibliography 269(6)
Index 275