Muutke küpsiste eelistusi
  • Formaat - PDF+DRM
  • Hind: 64,99 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Raamatukogudele

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Quantum Chemistry provides a coherent and structured approach in introducing the concept of 'quantum' to the students of quantum mechanics. An attempt is made to bring out the subtleties of quantum mechanics, hidden in its abstract laws and equations, applicable to the atomic domain by showing its relevance to the observable macroscopic world as well.

The book will help students dispel the stigma associated with quantum mechanics. The emphasis on conceptual approach provides a platform to stand on, and a stimulus to pursue higher quantum mechanicsthe doorway to the all-pervasive quantum world.

Print edition not for sale in South Asia (India, Sri Lanka, Nepal, Bangladesh, Pakistan or Bhutan).
Preface vii
Chapter 1 Historical Background
1.1 Newtonian Mechanics
1(2)
1.2 Black Body Radiation
3(4)
Physical Basis for the Success
6(1)
1.3 The Photoelectric Effect
7(2)
1.4 The Compton Effect
9(1)
1.5 Atomic Spectra
10(1)
1.6 Atomic Models
11(2)
1.7 The Bohr Atom
13(4)
Assumptions
13(1)
Energy of the Electron in the Atom
14(1)
Extensions of the Bohr's Theory
15(1)
Zeeman Effect
16(1)
Spin
17(1)
1.8 Failure of the Old Quantum Theory
17(2)
Chapter 2 The Wave Equation
2.1 De Broglie's Concept of Matter Waves
19(3)
Wave length and momentum of a particle
20(2)
2.2 Heisenberg's Uncertainty Principle
22(4)
2.3 Wave Equation
26(3)
2.4 Interpretation of Wave Function
29(1)
2.5 Normalized and Orthogonal Wave Functions
30(1)
2.6 Exercises
31(2)
Chapter 3 The Postulates
3.1 The Formulation of Quantum Mechanics
33(1)
Schrodinger Wave Equation
33(1)
3.2 The Postulates of Quantum Mechanics
34(9)
3.2.1 Postulate 1
34(1)
3.2.2 Well Behaved Wave Function
35(1)
The Fitness of the Wave Function
36(1)
3.2.3 Postulate II
37(1)
Hermitian Operator
38(3)
3.2.4 Postulate III
41(1)
3.2.5 Postulate IV
42(1)
3.2.6 Postulate V
43(1)
3.3 Exercises
43(5)
Chapter 4 Applications of Schrodinger Equation-1 (Simple systems with constant potential energy)
4.1 Particle in a One-dimensional Box
48(8)
4.1.1 Salient Instructive Features of the Problem
51(4)
4.1.2 Zero Point Energy
55(1)
4.1.3 Free Particle
56(1)
4.2 The Particle in a Three Dimensional Box
56(6)
Degeneracy
59(3)
4.3 The Structure of Matter
62(2)
4.4 Factors Influencing Color
64(3)
4.5 Tunneling in Quantum Mechanics
67(5)
Systems with Discontinuity in the Potential Field
69(2)
Hydrogen Transfer Reaction
71(1)
4.6 The Rigid Rotor
72(5)
Chapter 5 Applications of Schrodinger Equation-2 (Simple Systems with Variable Potential Energy)
5.1 One-dimensional Harmonic Oscillator
77(5)
Wave functions of the harmonic oscillator
80(2)
5.2 The Hydrogen Atom
82(19)
Polar coordinates
83(2)
Separation of variables
85(3)
The Φ equation
88(1)
The equation
89(1)
Spherical Harmonics
90(1)
The Radial Equation
90(1)
Quantum States
91(1)
Wave Functions of the Hydrogen Atom
92(2)
Hydrogen like Wave Functions
94(1)
The Radial Function
94(1)
The Radial Distribution Functions
95(2)
Show that r = a0 for the 1s orbital
97(1)
The Angular Function Y(θ,Φ)
98(1)
Nomenclature of p Orbitals
99(1)
Nomenclature of d Orbitals
100(1)
Chapter 6 Approximation Methods
6.1 Perturbation Theory
101(4)
Perturbation theory consists of a set of successive corrections to an unperturbed problem
103(2)
6.2 The Variational Method
105(3)
Proof
107(1)
6.3 The Hartree Theory
108(4)
Surface of the Atom
108(4)
6.4 Exercises
112(3)
Chapter 7 Bonding in Molecules
7.1 Molecular Orbital Theory
115(12)
Hamiltonian operator for H2+ and H2
123(1)
The Stability of Hydrogen Molecule Ion
124(3)
7.2 Valence Bond Theory
127(4)
7.3 Hybridization
131(8)
Linear Structure -- BeCl2
132(2)
Trigonal Planar Structure
134(1)
Tetrahedral Structure
135(2)
Octahedral Complexes
137(2)
Chapter 8 Appendix
8.1 SI Units (Systeme International d'unites)
139(1)
8.2 Derived Units
139(2)
8.3 Supplementary Units
141(1)
8.4 CGS Units
141(1)
8.5 Prefix Dictionary
141(1)
8.6 Experimental Foundation
142(1)
8.7 Calculation of Effective Nuclear Charge
143(3)
8.8 Approximate Orbitals
146(1)
Slater orbitals
146(1)
8.9 Angular Momentum
147(3)
8.10 Laplacian Operator
150(1)
(Conversion from Cartesian to Polar coordinates)
150(1)
8.11 Supplement to Rigid Rotor
151(1)
Associated Legendre function
151(1)
Associated Legendre polynomial
151(1)
8.12 Supplement to One-dimensional Harmonic Oscillator
151
M. S. Prasada Rao was Professor of Inorganic Chemistry, Andhra University, Visakhapatnam. He has to his credit a number of orbital, crystal and electronic models developed for teaching chemical principles and theories. He was the Best Teacher awardee of the Government of Andhra Pradesh. He is the former Registrar of Andhra University and former Vice-chancellor of Gitam deemed to be University, Visakhapatnam. He was also associated with academic administration of the university in different capacities.