Muutke küpsiste eelistusi

E-raamat: Quantum Chemistry Simulation of Biological Molecules

  • Formaat: EPUB+DRM
  • Ilmumisaeg: 11-Feb-2021
  • Kirjastus: Cambridge University Press
  • Keel: eng
  • ISBN-13: 9781108803847
Teised raamatud teemal:
  • Formaat - EPUB+DRM
  • Hind: 82,73 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: EPUB+DRM
  • Ilmumisaeg: 11-Feb-2021
  • Kirjastus: Cambridge University Press
  • Keel: eng
  • ISBN-13: 9781108803847
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Nano-biotechnology crosses the boundaries between physics, biochemistry and bioengineering, and has profound implications for the biomedical engineering industry. This book describes the quantum chemical simulation of a wide variety of molecular systems, with detailed analysis of their quantum chemical properties, individual molecular configurations, and cutting-edge biomedical applications. Topics covered include the basic properties of quantum chemistry and its conceptual foundations, the nanoelectronics and thermodynamics of DNA, the optoelectronic properties of the five DNA/RNA nucleobase anhydrous crystals, and key examples of molecular diode prototypes. A wide range of important applications are described, including protein binding of drugs such as cholesterol-lowering, anti-Parkinson and anti-migraine drugs, and recent developments in cancer biology are also discussed. This modern and comprehensive text is essential reading for graduate students and researchers in multidisciplinary areas of biological physics, chemical physics, chemical engineering, biochemistry and bioengineering.

This book describes the quantum chemical simulation of a wide variety of molecular systems, with detailed analysis of their quantum chemical properties, individual molecular configurations, and cutting-edge biomedical applications.

Arvustused

'Recommended.' J. A. Kelly, Choice Connect

Muu info

This book covers quantum chemical simulation of molecular systems and their quantum chemical properties, alongside the most cutting-edge biomedical applications.
Preface ix
Figure Credits
xiii
1 Basic Properties of Quantum Chemistry
1(33)
1.1 Introduction
1(2)
1.2 The Schrodinger Equation
3(6)
1.3 Chemical Bonds
9(5)
1.4 Classical Calculations
14(2)
1.5 Quantum Calculations
16(3)
1.6 Density Functional Theory
19(8)
1.7 Exchange-Correlation Energy
27(3)
1.8 Molecular Fractionation with Conjugate Caps Method
30(2)
1.9 Conclusions
32(2)
2 Charge Transport in the DNA Molecule
34(26)
2.1 Introduction
34(4)
2.2 Quasiperiodic Structures
38(5)
2.3 Tight-Binding Hamiltonian
43(2)
2.4 Charge Transport in DNA
45(14)
2.5 Conclusions
59(1)
3 Electronic Transmission Spectra of the DNA Molecule
60(29)
3.1 Introduction
60(3)
3.2 Electrical Conductivity
63(5)
3.3 Twisted Geometry
68(8)
3.4 Methylated States
76(5)
3.5 Diluted Base-Pairing
81(6)
3.6 Conclusions
87(2)
4 Thermodynamic Properties of the DNA Molecule
89(28)
4.1 Introduction
89(1)
4.2 Classical Statistics: The Single-Strand DNA Structure
90(5)
4.3 Classical Statistics: The Double-Strand DNA Structure
95(3)
4.4 Quantum Statistics: The Single-Strand DNA Structure
98(3)
4.5 Quantum Statistics: The Double-Strand DNA Structure
101(3)
4.6 Nonextensive Thermodynamics
104(4)
4.7 DNA Denaturation
108(8)
4.8 Conclusions
116(1)
5 Properties of the DNA/RNA Nucleobases
117(20)
5.1 Introduction
117(1)
5.2 Experimental Procedure and Computational Details
118(3)
5.3 Crystal Structures
121(2)
5.4 Electronic Band Structure
123(5)
5.5 Effective Masses
128(3)
5.6 Absorption Spectra
131(4)
5.7 Conclusions
135(2)
6 Molecular Electronics
137(27)
6.1 Introduction
137(2)
6.2 Molecular Diode
139(7)
6.3 Alpha3-Helical Polypeptide and Its Biochemical Variants
146(10)
6.4 Single Micro-RNAs Chains and the Autism Spectrum Disorder
156(7)
6.5 Conclusions
163(1)
7 Amino Acid Anhydrous Crystals
164(30)
7.1 Introduction
164(2)
7.2 Structural, Electronic, and Optical Properties
166(13)
7.3 Infrared and Raman Spectra of the L-Aspartic Acid
179(9)
7.4 Role of Water on the Vibrational Spectra of L-Aspartic Acid
188(3)
7.5 Conclusions
191(3)
8 Protein-Protein Systems
194(13)
8.1 Introduction
194(2)
8.2 The Protein Data Bank
196(1)
8.3 Improving PDB through Molecular Dynamics
197(2)
8.4 The Dielectric Function of Proteins
199(5)
8.5 The Importance of Protein-Protein Interactions
204(2)
8.6 Conclusions
206(1)
9 Ascorbic Acid and Ibuprofen Drugs
207(26)
9.1 Introduction
207(2)
9.2 Ascorbic Acid
209(6)
9.3 Ibuprofen
215(7)
9.4 Human Serum Albumin
222(9)
9.5 Conclusions
231(2)
10 Cholesterol-Lowering Drugs
233(16)
10.1 Introduction
233(2)
10.2 Crystallographic Data
235(3)
10.3 Chemical Structure
238(2)
10.4 Binding Interaction Energy Profiles
240(7)
10.5 Conclusions
247(2)
11 Collagen-Based Biomaterials
249(34)
11.1 Introduction
249(4)
11.2 Chemical Structure of the Collagen-Like Peptide T3-785
253(2)
11.3 Energetic Description
255(1)
11.4 Interaction Binding Energies
256(6)
11.5 Graphical Panel of the Most Relevant Interactions
262(5)
11.6 Integrin-Collagen Triple-Helix Complex Interaction
267(2)
11.7 Structural Representation
269(2)
11.8 Interaction Energy Profiles
271(9)
11.9 Conclusions
280(3)
12 Antimigraine Drugs
283(19)
12.1 Introduction
283(2)
12.2 Serotonin Receptors and the Antimigraine Drugs
285(2)
12.3 Drug-Receptor Complex Data
287(2)
12.4 Interaction Energy of the Amino Acid Fragments
289(6)
12.5 Total Binding Energy
295(5)
12.6 Conclusions
300(2)
13 Antiparkinson Drugs
302(29)
13.1 Introduction
302(2)
13.2 Levodopa Molecule
304(18)
13.3 Carbidopa Molecule
322(8)
13.4 Conclusions
330(1)
14 Central Nervous System Disorders
331(15)
14.1 Introduction
331(2)
14.2 The iGluR2-AMPA Receptors
333(2)
14.3 Crystallographic Data of the Different Types of Willardiines
335(1)
14.4 Willardiines Partial Agonism in iGluR2-AMPA Receptors
336(2)
14.5 Interaction Energies
338(6)
14.6 Conclusions
344(2)
15 The Biology of Cancer
346(36)
15.1 Introduction
346(2)
15.2 Estrogen Receptor and Its Agonists/Antagonists
348(8)
15.3 Energetic Description of Cilengitide Bound to Integrin
356(8)
15.4 Cancer Immunotherapy
364(16)
15.5 Conclusions
380(2)
16 Concluding Remarks
382(7)
16.1 Introduction
382(1)
16.2 Past Achievements
383(1)
16.3 The Road Ahead
384(3)
16.4 Conclusions
387(2)
References 389(22)
Index 411
Eudenilson Albuquerque is Professor of Biophysics at Universidade Federal do Rio Grande do Norte. Umberto Fulco is Professor of Biophysics at Universidade Federal do Rio Grande do Norte. Ewerton Caetano is Professor of Physics at the Universidade Federal do Ceará. Valder Freire is Professor of Physics at Universidade Federal do Ceará.