Muutke küpsiste eelistusi

E-raamat: Quantum Chromodynamics at High Energy

(Ohio State University), (Tel-Aviv University)
  • Formaat - PDF+DRM
  • Hind: 125,97 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

"Filling a gap in the current literature, this book is the first entirely dedicated to high energy quantum chromodynamics (QCD) including parton saturation. It presents groundbreaking progress on the subject and describes many problems at the forefront of research, bringing postgraduate students, theorists, and advanced experimentalists up to date with the current state of research in this field. A broad range of topics in high energy QCD is covered, most notably on the physics of parton saturation and the color glass condensate (CGC). The clear, helpful presentation includes numerous examples and exercises. Discussion ranges from the quasi-classical McLerran-Venugopalan model to the linear BFKL and nonlinear BK/JIMWLK small-x evolution equations. The authors' outlook embraces both theory and experiment and the physics of strong interactions is presented in a universal way, making it applicable to physicists from various subcommunities and to processes studied at all high energy accelerators around the world. A selection of color figures is available online at www.cambridge.org/9780521112574"--

Arvustused

"I have to say that the aim of the authors is abundantly reached. This book is well written and with enough material to grant a clear understanding of the matter to a graduate student. Both authors are well known in this field for a number of contributions. This book represents an excellent introduction to the study of QCD at high energy and could prove extremely useful for the researcher or the student aiming to start research in this area. It surely fills a gap in the literature which has occurred in recent years." Marco Frasca, Mathematical Reviews

Muu info

The first book entirely dedicated to high energy QCD including parton saturation and CGC, covering the last several decades of development.
Preface ix
1 Introduction: basics of QCD perturbation theory
1(21)
1.1 The QCD Lagrangian
1(2)
1.2 A review of Feynman rules for QCD
3(4)
1.2.1 QCD Feynman rules
6(1)
1.3 Rules of light cone perturbation theory
7(7)
1.3.1 QCD LCPT rules
10(2)
1.3.2 Light cone wave function
12(2)
1.4 Sample LCPT calculations
14(5)
1.4.1 LCPT "cross-check"
14(3)
1.4.2 A sample light cone wave function
17(2)
1.5 Asymptotic freedom
19(3)
2 Deep inelastic scattering
22(52)
2.1 Kinematics, cross section, and structure functions
22(5)
2.2 Parton model and Bjorken scaling
27(11)
2.2.1 Warm-up: DIS on a single free quark
27(2)
2.2.2 Full calculation: DIS on a proton
29(9)
2.3 Space-time structure of DIS processes
38(5)
2.4 Violation of Bjorken scaling; the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi evolution equation
43(31)
2.4.1 Parton distributions
43(2)
2.4.2 Evolution for quark distribution
45(8)
2.4.3 The DGLAP evolution equations
53(3)
2.4.4 Gluon-gluon splitting function
56(4)
2.4.5 General solution of the DGLAP equations
60(3)
2.4.6 Double logarithmic approximation
63(9)
Further reading
72(1)
Exercises
72(2)
3 Energy evolution and leading logarithm-1/x approximation in QCD
74(49)
3.1 Paradigm shift
74(2)
3.2 Two-gluon exchange: the Low-Nussinov pomeron
76(6)
3.3 The Balitsky-Fadin-Kuraev-Lipatov evolution equation
82(30)
3.3.1 Effective emission vertex
83(5)
3.3.2 Virtual corrections and reggeized gluons
88(4)
3.3.3 The BFKL equation
92(3)
3.3.4 Solution of the BFKL equation
95(8)
3.3.5 Bootstrap property of the BFKL equation
103(4)
3.3.6 Problems of BFKL evolution: unitarity and diffusion
107(5)
3.4 The nonlinear Gribov-Levin-Ryskin and Mueller-Qiu evolution equation
112(11)
3.4.1 The physical picture of parton saturation
112(3)
3.4.2 The GLR-MQ equation
115(6)
Further reading
121(1)
Exercises
121(2)
4 Dipole approach to high parton density QCD
123(75)
4.1 Dipole picture of DIS
123(6)
4.2 Glauber-Gribov-Mueller multiple-rescatterings formula
129(12)
4.2.1 Scattering on one nucleon
130(3)
4.2.2 Scattering on many nucleons
133(6)
4.2.3 Saturation picture from the GGM formula
139(2)
4.3 Mueller's dipole model
141(22)
4.3.1 Dipole wave function and generating functional
141(12)
4.3.2 The BFKL equation in transverse coordinate space
153(6)
4.3.3 The general solution of the coordinate-space BFKL equation
159(4)
4.4 The Balitsky-Kovchegov equation
163(9)
4.5 Solution of the Balitsky-Kovchegov equation
172(17)
4.5.1 Solution outside the saturation region; extended geometric scaling
172(4)
4.5.2 Solution inside the saturation region; geometric scaling
176(2)
4.5.3 Semiclassical solution
178(3)
4.5.4 Traveling wave solution
181(3)
4.5.5 Numerical solutions
184(4)
4.5.6 Map of high energy QCD
188(1)
4.6 The Bartels-Kwiecinski-Praszalowicz equation
189(3)
4.7 The odderon
192(6)
Further reading
195(1)
Exercises
196(2)
5 Classical gluon fields and the color glass condensate
198(30)
5.1 Strong classical gluon fields: the McLerran-Venugopalan model
198(17)
5.1.1 The key idea of the approach
198(2)
5.1.2 Classical gluon field of a single nucleus
200(5)
5.1.3 Classical gluon distribution
205(10)
5.2 The Jalilian-Marian-Iancu-McLerran-Weigert-Leonidov-Kovner evolution equation
215(13)
5.2.1 The color glass condensate (CGC)
215(1)
5.2.2 Derivation of JIMWLK evolution
216(8)
5.2.3 Obtaining BK from JIMWLK and the Balitsky hierarchy
224(2)
Further reading
226(1)
Exercises
226(2)
6 Corrections to nonlinear evolution equations
228(22)
6.1 Why we need higher-order corrections
228(1)
6.2 Running-coupling corrections to the BFKL, BK, and JIMWLK evolutions
229(13)
6.2.1 An outline of the running-coupling calculation
230(5)
6.2.2 Impact of running coupling on small-x evolution
235(5)
6.2.3 Nonperturbative effects and renormalons
240(2)
6.3 The next-to-leading order BFKL and BK equations
242(8)
6.3.1 Short summary of NLO calculations
243(2)
6.3.2 Renormalization-group-improved NLO approach
245(3)
Further reading
248(1)
Exercises
249(1)
7 Diffraction at high energy
250(22)
7.1 General concepts
250(5)
7.1.1 Diffraction in optics
250(3)
7.1.2 Elastic scattering and inelastic diffraction
253(2)
7.2 Diffractive dissociation in DIS
255(17)
7.2.1 Low-mass diffraction
256(6)
7.2.2 Nonlinear evolution equation for high-mass diffraction
262(8)
Further reading
270(1)
Exercises
271(1)
8 Particle production in high energy QCD
272(21)
8.1 Gluon production at the lowest order
272(2)
8.2 Gluon production in DIS and pA collisions
274(16)
8.2.1 Quasi-classical gluon production
274(10)
8.2.2 Including nonlinear evolution
284(6)
8.3 Gluon production in nucleus-nucleus collisions
290(3)
Further reading
291(1)
Exercises
292(1)
9 Instead of conclusions
293(14)
9.1 Comparison with experimental data
293(10)
9.1.1 Deep inelastic scattering
294(1)
9.1.2 Proton(deuteron)-nucleus collisions
295(2)
9.1.3 Proton-proton and heavy ion collisions
297(6)
9.2 Unsolved theoretical problems
303(4)
Further reading
306(1)
Appendix A Reference formulas
307(5)
A.1 Dirac matrix element tables
307(1)
A.2 Some useful integrals
307(3)
A.3 Another useful integral
310(2)
Appendix B Dispersion relations, analyticity, and unitarity of the scattering amplitude
312(7)
B.1 Crossing symmetry and dispersion relations
312(4)
B.2 Unitarity and the Froissart-Martin bound
316(3)
References 319(17)
Index 336
Yuri V. Kovchegov is Professor in the Department of Physics at the Ohio State University. He is a world leader in the field of high energy QCD. In 2006 he was awarded The Raymond and Beverly Sackler Prize in the Physical Sciences by Tel Aviv University for a number of groundbreaking contributions in the field. The BalitskyKovchegov equation bears his name. Eugene Levin is Professor Emeritus in the School of Physics and Astronomy at Tel Aviv University. He is the founding father of the field of parton saturation and of the constituent quark model. Equations and approaches that bear his name include the LevinFrankfurt quark-counting rules, the GribovLevinRyskin nonlinear equation, the LevinTuchin solution, and the KharzeevLevinNardi approach, reflecting only a selection of his many contributions to high energy physics.