Muutke küpsiste eelistusi

E-raamat: Quantum Communication, Quantum Networks, and Quantum Sensing

(Professor of Electrical and Computer Engineering and Optical Sciences, University of Arizona, Tucson, USA)
  • Formaat: PDF+DRM
  • Ilmumisaeg: 17-Jul-2022
  • Kirjastus: Academic Press Inc
  • Keel: eng
  • ISBN-13: 9780128231005
  • Formaat - PDF+DRM
  • Hind: 156,97 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: PDF+DRM
  • Ilmumisaeg: 17-Jul-2022
  • Kirjastus: Academic Press Inc
  • Keel: eng
  • ISBN-13: 9780128231005

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Quantum Communication, Quantum Networks, and Quantum Sensing represents a self-contained introduction to quantum communication, quantum error-correction, quantum networks, and quantum sensing. It starts with basic concepts from classical detection theory, information theory, and channel coding fundamentals before continuing with basic principles of quantum mechanics including state vectors, operators, density operators, measurements, and dynamics of a quantum system. It continues with fundamental principles of quantum information processing, basic quantum gates, no-cloning and theorem on indistinguishability of arbitrary quantum states. The book then focuses on quantum information theory, quantum detection and Gaussian quantum information theories, and quantum key distribution (QKD). The book then covers quantum error correction codes (QECCs) before introducing quantum networks. The book concludes with quantum sensing and quantum radars,quantum machine learning and fault-tolerant quantum error correction concepts.

  • Integrates quantum information processing fundamentals, quantum communication, quantum error correction, quantum networks, QKD, quantum sensing, and quantum machine learning
  • Provides in-depth exposition on the design of quantum error correction circuits, quantum communications systems, quantum networks, and quantum sensing systems
  • Shows how to design the information processing circuits, stabilizer codes, CSS codes, entanglement-assisted quantum error correction codes
  • Describes quantum machine learning
Preface xiii
Chapter 1 Basics of quantum information, quantum communication, quantum sensing, and quantum networking
1(30)
1.0 Overview
1(3)
1.1 Photon polarization
4(7)
1.2 The concept of qubit
11(1)
1.3 Quantum gates and quantum information processing
12(2)
1.4 Quantum teleportation
14(1)
1.5 Quantum error correction concepts
15(2)
1.6 Quantum sensing
17(1)
1.7 Quantum key distribution
18(3)
1.8 Quantum networking
21(1)
1.9 Organization of the book
22(9)
References
28(3)
Chapter 2 Information theory, error correction, and detection theory
31(58)
2.1 Classical information theory fundamentals
32(11)
2.1.1 Entropy, conditional entropy, relative entropy, and mutual information
32(2)
2.1.2 Source coding and data compaction
34(3)
2.1.3 Mutual information, channel capacity, channel coding theorem, and information capacity theorem
37(6)
2.2 Channel coding preliminaries
43(2)
2.3 Linear block codes
45(11)
2.3.1 Generator matrix for linear block code
47(1)
2.3.2 Parity-check matrix for linear block code
48(2)
2.3.3 Distance properties of linear block codes
50(1)
2.3.4 Coding gain
51(1)
2.3.5 Syndrome decoding and standard array
52(4)
2.3.6 Important coding bounds
56(1)
2.4 Cyclic codes
56(7)
2.5 Bose---Chaudhuri---Hocquenghem codes
63(8)
2.5.1 Galois fields
63(2)
2.5.2 The structure and encoding of Bose---Chaudhuri---Hocquenghem codes
65(4)
2.5.3 Decoding of Bose---Chaudhuri---Hocquenghem codes
69(2)
2.6 Reed---Solomon, concatenated, and product codes
71(3)
2.7 Detection and estimation theory fundamentals
74(11)
2.7.1 Geometric representation of received signals
74(5)
2.7.2 Optimum and log-likelihood ratio receivers
79(4)
2.7.3 Estimation theory fundamentals
83(2)
2.8 Concluding remarks
85(4)
References
85(2)
Further reading
87(2)
Chapter 3 Quantum information processing fundamentals
89(36)
3.1 Quantum information processing features
89(1)
3.2 State vectors, operators, projection operators, and density operators
90(7)
3.2.1 State vectors and operators
91(1)
3.2.2 Projection operators
92(1)
3.2.3 Photon, spin-1/2 systems, and Hadamard gate
93(2)
3.2.4 Density operators
95(2)
3.3 Measurements, uncertainty relations, and dynamics of quantum systems
97(5)
3.3.1 Measurements and generalized measurements
97(2)
3.3.2 Uncertainty principle
99(1)
3.3.3 Time evolution---Schrodinger equation
100(2)
3.4 Superposition principle, quantum parallelism, and quantum information processing basics
102(5)
3.5 No-cloning theorem
107(1)
3.6 Distinguishing quantum states
108(1)
3.7 Quantum entanglement
109(5)
3.8 Operator-sum representation
114(3)
3.9 Decoherence effects, depolarization, and amplitude damping channel models
117(5)
3.10 Summary
122(3)
References
123(1)
Further reading
124(1)
Chapter 4 Quantum information theory fundamentals
125(32)
4.1 Introductory remarks
125(1)
4.2 Von Neumann entropy
126(6)
4.2.1 Composite systems
129(3)
4.3 Holevo information, accessible information, and Holevo bound
132(2)
4.4 Data compression and Schumacher's noiseless quantum coding theorem
134(8)
4.4.1 Shannon's noiseless source coding theorem
135(2)
4.4.2 Schumacher's noiseless quantum source coding theorem
137(5)
4.5 Quantum channels
142(3)
4.6 Quantum channel coding and Holevo---Schumacher---Westmoreland theorem
145(8)
4.6.1 Classical error correction and Shannon's channel coding theorem
145(3)
4.6.2 Quantum error correction and Holevo---Schumacher---Westmoreland theorem
148(5)
4.7 Summary
153(4)
References
154(3)
Chapter 5 Quantum detection and quantum communication
157(58)
5.1 Density operators (revisited)
158(2)
5.2 Quantum detection theory fundamentals
160(1)
5.3 Binary quantum detection
161(4)
5.3.1 Quantum binary decision for pure states
163(2)
5.4 Coherent states, quadrature operators, and uncertainty relations
165(6)
5.5 Binary quantum optical communication in the absence of background radiation
171(6)
5.5.1 Classical photon-counting receiver
171(1)
5.5.2 Quantum photon-counting receiver
171(2)
5.5.3 Optimum quantum detection for on---off keying
173(1)
5.5.4 Optimum quantum detection for binary phase-shift keying
173(1)
5.5.5 Near-optimum quantum detection for binary phase-shift keying (Kennedy receiver)
174(1)
5.5.6 Dolinar receiver
175(2)
5.6 Field coherent states, P-representation, and noise representation
177(4)
5.6.1 The field coherent states and P-representation
177(2)
5.6.2 Noise representation
179(2)
5.7 Binary quantum detection in the presence of noise
181(2)
5.8 Gaussian states, transformation, and channels, squeezed states, and Gaussian state detection
183(17)
5.8.1 Gaussian and squeezed states
184(1)
5.8.2 Gaussian transformations, Gaussian channels, and squeezed states
185(6)
5.8.3 Thermal decomposition of Gaussian states and von Neumann entropy
191(2)
5.8.4 Covariance matrices of two-mode Gaussian states
193(1)
5.8.5 Gaussian state detection
194(3)
5.8.6 The covariance matrices of multimode Gaussian systems and lossy transmission channel
197(3)
5.9 Generation of quantum states
200(3)
5.10 Multilevel quantum optical communication
203(9)
5.10.1 The square root measurement-based quantum decision
205(3)
5.10.2 Geometrically uniform symmetry constellations and M-ary phase-shift keying
208(2)
5.10.3 Multilevel quantum optical communication in the presence of noise
210(2)
5.11 Summary
212(3)
References
212(3)
Chapter 6 Quantum key distribution
215(58)
6.1 Cryptography basics
216(2)
6.2 Quantum key distribution basics
218(2)
6.3 No-cloning theorem and distinguishing quantum states
220(1)
6.4 Discrete variable quantum key distribution protocols
221(6)
6.4.1 BB84 protocols
221(2)
6.4.2 B92 protocol
223(1)
6.4.3 Ekert (E91) and Einstein---Podolsky---Rosen protocols
224(2)
6.4.4 Time-phase encoding
226(1)
6.5 Quantum key distribution security
227(5)
6.5.1 Independent (individual) or incoherent attacks
229(1)
6.5.2 Collective attacks
230(1)
6.5.3 Quantum hacking attacks and side-channel attacks
231(1)
6.5.4 Security of BB84 protocol
232(1)
6.6 Decoy-state protocols
232(3)
6.7 Measurement-device-independent quantum key distribution protocols
235(6)
6.7.1 Photonic bell state measurements
235(2)
6.7.2 Description of measurement-device-independent quantum key distribution protocol
237(2)
6.7.3 Time-phase-encoding-based measurement-device-independent quantum key distribution protocol
239(2)
6.7.4 The secrecy fraction of measurement-device-independent quantum key distribution protocols
241(1)
6.8 Twin-field quantum key distribution protocols
241(4)
6.9 Information reconciliation and privacy amplification
245(5)
6.9.1 Information reconciliation
246(2)
6.9.2 Privacy amplification
248(2)
6.10 Continuous variable quantum key distribution
250(14)
6.10.1 Homodyne and heterodyne detection schemes
251(2)
6.10.2 Squeezed state-based protocols
253(1)
6.10.3 Coherent state-based continuous-variable quantum key distribution protocols
254(5)
6.10.4 Secret key rate of continuous-variable quantum key distribution with Gaussian modulation under collective attacks
259(4)
6.10.5 Reverse reconciliation results for Gaussian modulation-based continuous-variable quantum key distribution
263(1)
6.11 Summary
264(9)
References
266(6)
Further reading
272(1)
Chapter 7 Quantum error correction fundamentals
273(40)
7.1 Pauli operators (revisited)
274(2)
7.2 Quantum error correction concepts
276(11)
7.2.1 Three-qubit flip code
277(2)
7.2.2 Three-qubit phase flip code
279(2)
7.2.3 Shor's nine-qubit code
281(2)
7.2.4 Stabilizer code concepts
283(1)
7.2.5 Relationship between quantum and classical codes
284(1)
7.2.6 Quantum cyclic codes
285(1)
7.2.7 Calderbank---Shor---Steane codes
286(1)
7.2.8 Quantum codes over GF(4)
286(1)
7.3 Quantum error correction
287(12)
7.3.1 Redundancy and quantum error correction
287(2)
7.3.2 Stabilizer group S
289(1)
7.3.3 Quantum-check matrix and syndrome equation
290(2)
7.3.4 Necessary and sufficient conditions for quantum error correction coding
292(1)
7.3.5 A quantum stabilizer code for phase-flip channel (revisited)
292(2)
7.3.6 Distance properties of quantum error correction codes
294(1)
7.3.7 Calderbank---Shor---Steane codes (revisited)
295(1)
7.3.8 Encoding and decoding circuits of quantum stabilizer codes
296(3)
7.4 Important quantum coding bounds
299(4)
7.4.1 Quantum Hamming bound
299(1)
7.4.2 Quantum Gilbert---Varshamov bound
300(1)
7.4.3 Quantum Singleton (Knill---Laflamme) bound
301(1)
7.4.4 Quantum weight enumerators and quantum MacWilliams identity
302(1)
7.5 Quantum operations (superoperators) and quantum channel models
303(8)
7.5.1 Operator-sum representation
303(4)
7.5.2 Depolarizing channel
307(2)
7.5.3 Amplitude damping channel
309(1)
7.5.4 Generalized amplitude damping channel
310(1)
7.6 Summary
311(2)
References
311(2)
Chapter 8 Quantum stabilizer codes and beyond
313(58)
8.1 Stabilizer codes
313(5)
8.2 Encoded operators
318(3)
8.3 Finite geometry representation
321(3)
8.4 Standard form of stabilizer codes
324(4)
8.5 Efficient encoding and decoding
328(11)
8.5.1 Efficient encoding
328(8)
8.5.2 Efficient decoding
336(3)
8.6 Nonbinary stabilizer codes
339(5)
8.7 Subsystem codes
344(7)
8.8 Topological codes
351(5)
8.9 Surface codes
356(1)
8.10 Entanglement-assisted quantum codes
357(9)
8.10.1 Principles of entanglement-assisted quantum error correction
358(1)
8.10.2 Entanglement-assisted canonical quantum codes
359(2)
8.10.3 General entanglement-assisted quantum codes
361(2)
8.10.4 Entanglement-assisted quantum error correction codes derived from classical quaternary and binary codes
363(3)
8.11 Summary
366(5)
References
366(3)
Further reading
369(2)
Chapter 9 Quantum low-density parity-check codes
371(36)
9.1 Classical low-density parity-check codes
371(13)
9.1.1 Large-girth quasi-cyclic binary low-density parity-check codes
372(3)
9.1.2 Decoding of binary low-density parity-check codes
375(3)
9.1.3 Bit error rate performance of binary low-density parity-check codes
378(1)
9.1.4 Nonbinary low-density parity-check codes
379(2)
9.1.5 Low-density parity-check code design
381(3)
9.2 Dual-containing quantum low-density parity-check codes
384(6)
9.3 Entanglement-assisted quantum low-density parity-check codes
390(7)
9.4 Iterative decoding of quantum low-density parity-check codes
397(4)
9.5 Spatially coupled quantum low-density parity-check codes
401(1)
9.6 Summary
402(5)
References
402(5)
Chapter 10 Quantum networking
407(48)
10.1 Quantum communications networks and the quantum Internet
408(2)
10.2 Quantum teleportation and quantum relay
410(2)
10.3 Entanglement distribution
412(7)
10.3.1 Entanglement swapping and Bell state measurements
412(3)
10.3.2 Hong---Ou---Mendel effect
415(2)
10.3.3 Continuous variable quantum teleportation
417(1)
10.3.4 Quantum network coding
418(1)
10.4 Engineering entangled states and hybrid continuous-variable---discrete-variable quantum networks
419(7)
10.4.1 Hybrid continuous-variable---discrete-variable quantum networks
419(1)
10.4.2 Photon addition and photon subtraction modules
420(1)
10.4.3 Generation of hybrid discrete-variable---continuous-variable entangled states
421(2)
10.4.4 Hybrid continuous-variable---discrete-variable state teleportation and entanglement swapping through entangling measurements
423(2)
10.4.5 Generation of entangled macroscopic light states
425(1)
10.4.6 Noiseless amplification
425(1)
10.5 Cluster state-based quantum networking
426(7)
10.5.1 Cluster states and cluster state processing
426(4)
10.5.2 Cluster state-based quantum networks
430(3)
10.6 Surface code-based and quantum low-density parity-check code-based quantum networking
433(4)
10.7 Entanglement-assisted communication and networking
437(11)
10.7.1 Entanglement-assisted communication networks
437(3)
10.7.2 Nonlinear receivers for entanglement-assisted communication systems
440(3)
10.7.3 Entanglement-assisted communication with optical phase conjugation on the transmitter side
443(5)
10.8 Summary
448(7)
References
450(3)
Further reading
453(2)
Chapter 11 Quantum sensing and quantum radars
455(36)
11.1 Quantum phase estimation
455(6)
11.1.1 Quantum interferometry
458(1)
11.1.2 Supersensitive regime and Heisenberg limit
459(2)
11.2 Quantum Fisher information and quantum Cramer---Rao bound
461(2)
11.2.1 Cramer---Rao bound
461(1)
11.2.2 Quantum Cramer---Rao bound
462(1)
11.3 Distributed quantum sensing
463(9)
11.3.1 Distributed quantum sensing of in-phase displacements
465(4)
11.3.2 General distributed quantum sensing of in-phase displacements
469(3)
11.4 Quantum radars
472(14)
11.4.1 Interferometric quantum radars
474(3)
11.4.2 Quantum illumination-based quantum radars
477(2)
11.4.3 Entanglement-assisted quantum radars
479(6)
11.4.4 Quantum radar equation
485(1)
11.5 Summary
486(5)
References
487(4)
Chapter 12 Quantum machine learning
491(72)
12.1 Machine learning fundamentals
492(35)
12.1.1 Machine learning basics
492(7)
12.1.2 Principal component analysis
499(4)
12.1.3 Support vector machines
503(5)
12.1.4 Clustering
508(8)
12.1.5 Boosting
516(1)
12.1.6 Regression analysis
517(2)
12.1.7 Neural networks
519(8)
12.2 The Ising model, adiabatic quantum computing, and quantum annealing
527(3)
12.2.1 The Ising model
527(1)
12.2.2 Adiabatic quantum computing
528(1)
12.2.3 Quantum annealing
529(1)
12.3 Quantum approximate optimization algorithm and variational quantum eigensolver
530(6)
12.4 Quantum boosting
536(1)
12.5 Quantum random access memory
537(2)
12.6 Quantum matrix inversion
539(2)
12.7 Quantum principal component analysis
541(1)
12.8 Quantum optimization-based clustering
542(2)
12.9 Grover algorithm-based global quantum optimization
544(1)
12.10 Quantum K-means
545(3)
12.10.1 Scalar product calculation
546(1)
12.10.2 Quantum distance calculation
547(1)
12.10.3 Grover algorithm-based K-means
547(1)
12.11 Quantum support vector machines
548(3)
12.12 Quantum neural networks
551(6)
12.12.1 Feedforward quantum neural networks
551(3)
12.12.2 Quantum perceptron
554(1)
12.12.3 Quantum convolutional neural networks
554(3)
12.13 Summary
557(6)
References
558(3)
Further reading
561(2)
Chapter 13 Fault-tolerant quantum error correction
563(36)
13.1 Fault-tolerance basics
563(2)
13.2 Fault-tolerant quantum information processing concepts
565(5)
13.2.1 Fault-tolerant Pauli gates
565(1)
13.2.2 Fault-tolerant Hadamard gate
565(1)
13.2.3 Fault-tolerant phase gate (P)
566(1)
13.2.4 Fault-tolerant CNOT gate
566(1)
13.2.5 Gate fault-tolerant π/8 (T) gate
566(2)
13.2.6 Fault-tolerant measurement
568(1)
13.2.7 Fault-tolerant state preparation
569(1)
13.2.8 Fault-tolerant measurement of stabilizer generators
569(1)
13.3 Fault-tolerant quantum error correction
570(26)
13.3.1 Fault-tolerant syndrome extraction
571(8)
13.3.2 Fault-tolerant encoding operations
579(5)
13.3.3 Measurement protocol
584(3)
13.3.4 Fault-tolerant stabilizer codes
587(7)
13.3.5 The [ 5, 1, 3] fault-tolerant stabilizer code
594(2)
13.4 Summary
596(3)
References
597(1)
Further reading
597(2)
Index 599
Ivan B. Djordjevic is a Professor of Electrical and Computer Engineering and Optical Sciences, Director of the Optical Communications Systems Laboratory and the Quantum Communications Laboratory, and co-Director of the Signal Processing and Coding Lab at the University of Arizona. He is a fellow of IEEE and the Optical Society.

Prof. Djordjevic has authored or co-authored seven books and more than 530 journal and conference publications. He presently serves as a Senior Editor and member of the Editorial Board on the OSA/IEEE Journal of Optical Communications and Networking; the IOP Journal of Optics; IEEE Communications Letters; the Elsevier Physical Communication Journal, PHYCOM; Optical and Quantum Electronics; and Frequenz.

As of August 2020, he holds 53 U.S. patents.