Muutke küpsiste eelistusi

E-raamat: Quantum Computational Number Theory

  • Formaat: PDF+DRM
  • Ilmumisaeg: 26-Dec-2015
  • Kirjastus: Springer International Publishing AG
  • Keel: eng
  • ISBN-13: 9783319258232
  • Formaat - PDF+DRM
  • Hind: 110,53 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: PDF+DRM
  • Ilmumisaeg: 26-Dec-2015
  • Kirjastus: Springer International Publishing AG
  • Keel: eng
  • ISBN-13: 9783319258232

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book provides a comprehensive introduction to advanced topics in the computational and algorithmic aspects of number theory, focusing on applications in cryptography. Readers will learn to develop fast algorithms, including quantum algorithms, to solve various classic and modern number theoretic problems. Key problems include prime number generation, primality testing, integer factorization, discrete logarithms, elliptic curve arithmetic, conjecture and numerical verification. 

The author explores how many of the number theoretic problems are widely used as one-way functions in public-key cryptography and digital signatures. Chapters examine how, despite being computational intractable and having no polynomial-time algorithms, these number problems are used to safe-guard internet and e-commerce transactions. The clear practical applications for number problems explain why design efficient algorithms are extremely important in developing techniques and solutions.  

Quantum Computational Number Theory is suitable as a secondary text for advanced-level students in computer science, electronic and communication engineering, and applied mathematics.  It can also be used as a reference for researchers in information security and for practitioners in government intelligence agencies and the information security industries.  

Arvustused

Over the last two decades, the field of quantum computational number theory (QCNT) has grown, and this book summarizes the major developments in the area. I strongly recommend the book to all young computer science students and to mathematicians who love number theory so they can enjoy this new field. (Manish Gupta, Computing Reviews, April, 2017)

1 Introduction
1(32)
1.1 What is Number Theory
1(9)
1.2 What is Computational Number Theory
10(14)
1.3 What is Quantum Computational Number Theory
24(4)
1.4
Chapter Notes and Further Reading
28(5)
References
28(5)
2 Classical and Quantum Computation
33(26)
2.1 Classical Computability Theory
33(6)
2.1.1 Turing Machines
34(2)
2.1.2 The Church-Turing Thesis
36(1)
2.1.3 Decidability and Computability
37(2)
2.2 Classical Complexity Theory
39(6)
2.2.1 Complexity Classes
39(4)
2.2.2 The Cook-Karp Thesis
43(2)
2.3 Quantum Information and Computation
45(5)
2.4 Quantum Computability and Complexity
50(5)
2.5
Chapter Notes and Further Reading
55(4)
References
56(3)
3 Quantum Algorithms for Integer Factorization
59(62)
3.1 Classical Algorithms for Integer Factorization
59(20)
3.1.1 Basic Concepts
59(2)
3.1.2 Number Field Sieve Factoring
61(12)
3.1.3 ρ-Factoring Method
73(6)
3.2 Integer Factorization Based Cryptography
79(15)
3.3 Shor's Algorithm for Integer Factorization
94(12)
3.3.1 Quantum Order Finding Algorithm
94(6)
3.3.2 Quantum Integer Factoring Algorithm
100(3)
3.3.3 Quantum Algorithm for Breaking RSA
103(3)
3.4 Variations of Quantum Factoring Algorithms
106(9)
3.5
Chapter Notes and Further Reading
115(6)
References
116(5)
4 Quantum Computing for Discrete Logarithms
121(52)
4.1 Classical Algorithms for Discrete Logarithms
121(22)
4.1.1 Basic Concepts
121(2)
4.1.2 Shanks' Baby-Step Giant-Step Algorithm
123(3)
4.1.3 Silver--Pohlig--Hellman Algorithm
126(4)
4.1.4 ρ Method for DLP
130(3)
4.1.5 Index Calculus Algorithm
133(6)
4.1.6 Discrete Logarithm in Small Characteristic Fields Using FFS
139(4)
4.2 Discrete Logarithm Based Cryptography
143(12)
4.2.1 The Diffie-Hellman-Merkle Key-Exchange Protocol
143(3)
4.2.2 ElGamal Cryptography
146(1)
4.2.3 Massey-Omura Cryptography
147(2)
4.2.4 DLP-Based Digital Signatures
149(6)
4.3 Quantum Algorithms for Discrete Logarithms
155(12)
4.3.1 Basic Ideas of Quantum Computing for DLP
155(1)
4.3.2 Easy Case of Quantum DLP Algorithm
156(3)
4.3.3 General Case of Quantum DLP Algorithm
159(2)
4.3.4 Variations of Quantum DLP Algorithms
161(6)
4.4
Chapter Notes and Further Reading
167(6)
References
169(4)
5 Quantum Computing for Elliptic Curve Discrete Logarithms
173(56)
5.1 Classical Algorithms for Elliptic Curve Discrete Logarithms
173(18)
5.1.1 Basic Concepts
173(1)
5.1.2 Pohlig-Hellman Algorithm for ECDLP
174(1)
5.1.3 Baby-Step Giant-Step Algorithm for ECDLP
175(1)
5.1.4 ρ Method for ECDLP
176(4)
5.1.5 Xedni Calculus for ECDLP
180(5)
5.1.6 Recent Progress in ECDLP
185(6)
5.2 ECDLP-Based Cryptography
191(21)
5.2.1 Basic Ideas in ECDLP-Based Cryptography
191(1)
5.2.2 Precomputations of Elliptic Curve Cryptography
192(1)
5.2.3 Elliptic Curve DHM
193(3)
5.2.4 Elliptic Curve Massey-Omura
196(3)
5.2.5 Elliptic Curve ElGamal
199(3)
5.2.6 Menezes-Vanstone ECC
202(1)
5.2.7 Elliptic Curve DSA
203(9)
5.3 Quantum Algorithms for Elliptic Curve Discrete Logarithms
212(12)
5.3.1 Basic Idea for Quantum Attacking on ECDLP/ECDLP-Based Cryptography
212(4)
5.3.2 Eicher-Opoku's Quantum Algorithm for ECDLP
216(4)
5.3.3 Proos-Zalka's Quantum Algorithm for ECDLP
220(3)
5.3.4 Optimized Quantum Algorithm on ECDLP/ECC
223(1)
5.4
Chapter Notes and Further Reading
224(5)
References
225(4)
6 Miscellaneous Quantum Algorithms
229(20)
6.1 Solving Pell's Equation
229(7)
6.2 Verifying Number-Theoretic Conjectures
236(4)
6.2.1 Verifying Riemann's Hypothesis
236(2)
6.2.2 Verifying BSD Conjecture
238(2)
6.3 More Quantum Algorithms
240(2)
6.4
Chapter Notes and Further Reading
242(7)
References
243(6)
Index 249