Muutke küpsiste eelistusi

E-raamat: Quantum Electrodynamics through the Eyes of a Biophysicist

  • Formaat: 261 pages
  • Ilmumisaeg: 01-Jan-2017
  • Kirjastus: Nova Science Publishers Inc
  • ISBN-13: 9781536104813
  • Formaat - PDF+DRM
  • Hind: 284,05 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: 261 pages
  • Ilmumisaeg: 01-Jan-2017
  • Kirjastus: Nova Science Publishers Inc
  • ISBN-13: 9781536104813

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

In this book, an attempt to augment the physical representations about some phenomena of the quantum electrodynamics in relation to medical physics is made. First of all, the physical theory of an electromagnetic radiation quantum is developed. The Schrodinger's equation for a quantum is found and solved. The quantum length, how it is radiated, what the role of a vacuum in these processes, etc. are shown. The explanation of the quark confinement reason (impossibility to leave a hadron by a quark) is given. With the help of the Feynman's diagram method, some physical processes playing an important role in medical physics are analysed in detail: annihilation of the electrons and positrons in photons, breaking of the electrons in an electric field of a nucleus, changing of the quantum polarization direction at the interaction site with molecules, etc. The use of Feynman's diagram method makes the loss of some physical phenomena accompanying a researched physical process possible, in particular the Doppler effect. On the basis of the quantum electrodynamics, the modern methods of diagnostics are investigated: a positron-emission tomography and a magneto-resonant tomography. Their developmental processes are also discussed. This book will be useful to students and scientists whose interests lay in the fields of quantum electrodynamics and medical physics.
Preface vii
Introduction ix
Chapter 1 Photon
1(40)
1.1 The Generalized Coordinates
1(4)
1.2 Quantization of an Electromagnetic Field
5(2)
1.3 Schrodinger's Equation for a Light Quantum
7(3)
1.4 Solving the Schrodinger's Equation for a Light Quantum
10(6)
1.5 Problem of a Vacuum
16(1)
1.6 Normalization and Length of a Photon
17(2)
1.7 The Operator Form of the Schrodinger's Equation for a Light Quantum
19(2)
1.8 Photon in a Constant Homogeneous Gravitational Field
21(12)
1.9 Radiation of a Photon
33(3)
1.10 Transition of a Photon from One Medium to Another Medium
36(5)
Chapter 2 Elementary Particles: Reason for the Quarks Confinement in the Yang-Mills Field
41(14)
2.1 Elementary Particles
41(1)
2.2 The Yang-Mills Field Equations
42(5)
2.3 Solutions of the Yang-Mills Field Equations
47(8)
Chapter 3 Polarizing and Quantum Effects in Malus Law
55(64)
3.1 Polarization of Light
55(2)
3.2 Malus Law. The Classical Approach
57(9)
3.3 The Quantum-Relativistic Form of Malus Law
66(53)
Chapter 4 Annihilation: Positron-Emission Tomography
119(26)
4.1 Differential Effective Section a Positron and Electron in the Photon's Annihilation
119(13)
4.2 Angular and Power Distributions of the Annihilative Radiations
132(3)
4.3 The Reasons for an Angular and Power Distribution of the Annihilative Radiations
135(5)
4.4 Application of Annihilative Radiation in Positron-Emission Tomography
140(5)
Chapter 5 Braking Radiation
145(36)
5.1 The Analysis of Braking Radiation's Occurrence at the Movement of an Electron in a Substance. The Non-Relativistic Variant
146(11)
5.2 The Relativistic Analysis of a Threshold Process of the Electron's Braking in a Metal
157(5)
5.3 The Analysis of the Braking Radiation's Occurrence at the Movement of an Electron in a Substance. The Relativistic Variant
162(16)
5.4 Braking Radiation of the Electrons in an Electric Field of an Easy Nucleus
178(3)
Chapter 6 Optical Activity
181(42)
6.1 The Phenomenological Theory of Optical Activity
181(3)
6.2 Electrodynamics of Optical Activity
184(6)
6.3 The Classical Molecular Theory of Optical Activity
190(3)
6.4 Quantum Theory of Optical Activity: The Non-Relativistic Variant
193(13)
6.5 Spectral Dependences of an Optical Rotation and a Circular Dichroism
206(7)
6.6 Quantum Theory of an Optical Activity. The Relativistic Variant
213(10)
Chapter 7 Interaction of the Electromagnetic Field and a Spin: Magnetic-Resonant Tomography
223(16)
7.1 Magnetic-Resonant Tomography
224(3)
7.2 Quantum-Mechanical Analysis of the MRT-Signal Occurrence
227(12)
Conclusion 239(2)
References 241(4)
Author's Contact Information 245(2)
Index 247